There are three steps in hierarchical agglomerative clustering (HAC):
- Quantify Data (
metric
argument)
- Cluster Data (
method
argument)
- Choose the number of clusters
Doing
z = linkage(a)
will accomplish the first two steps. Since you did not specify any parameters it uses the standard values
metric = 'euclidean'
method = 'single'
So z = linkage(a)
will give you a single linked hierachical agglomerative clustering of a
. This clustering is kind of a hierarchy of solutions. From this hierarchy you get some information about the structure of your data. What you might do now is:
- Check which
metric
is appropriate, e. g. cityblock
or chebychev
will quantify your data differently (cityblock
, euclidean
and chebychev
correspond to L1
, L2
, and L_inf
norm)
- Check the different properties / behaviours of the
methdos
(e. g. single
, complete
and average
)
- Check how to determine the number of clusters, e. g. by reading the wiki about it
- Compute indices on the found solutions (clusterings) such as the silhouette coefficient (with this coefficient you get a feedback on the quality of how good a point/observation fits to the cluster it is assigned to by the clustering). Different indices use different criteria to qualify a clustering.
Here is something to start with
import numpy as np
import scipy.cluster.hierarchy as hac
import matplotlib.pyplot as plt
a = np.array([[0.1, 2.5],
[1.5, .4 ],
[0.3, 1 ],
[1 , .8 ],
[0.5, 0 ],
[0 , 0.5],
[0.5, 0.5],
[2.7, 2 ],
[2.2, 3.1],
[3 , 2 ],
[3.2, 1.3]])
fig, axes23 = plt.subplots(2, 3)
for method, axes in zip(['single', 'complete'], axes23):
z = hac.linkage(a, method=method)
# Plotting
axes[0].plot(range(1, len(z)+1), z[::-1, 2])
knee = np.diff(z[::-1, 2], 2)
axes[0].plot(range(2, len(z)), knee)
num_clust1 = knee.argmax() + 2
knee[knee.argmax()] = 0
num_clust2 = knee.argmax() + 2
axes[0].text(num_clust1, z[::-1, 2][num_clust1-1], 'possible\n<- knee point')
part1 = hac.fcluster(z, num_clust1, 'maxclust')
part2 = hac.fcluster(z, num_clust2, 'maxclust')
clr = ['#2200CC' ,'#D9007E' ,'#FF6600' ,'#FFCC00' ,'#ACE600' ,'#0099CC' ,
'#8900CC' ,'#FF0000' ,'#FF9900' ,'#FFFF00' ,'#00CC01' ,'#0055CC']
for part, ax in zip([part1, part2], axes[1:]):
for cluster in set(part):
ax.scatter(a[part == cluster, 0], a[part == cluster, 1],
color=clr[cluster])
m = '\n(method: {})'.format(method)
plt.setp(axes[0], title='Screeplot{}'.format(m), xlabel='partition',
ylabel='{}\ncluster distance'.format(m))
plt.setp(axes[1], title='{} Clusters'.format(num_clust1))
plt.setp(axes[2], title='{} Clusters'.format(num_clust2))
plt.tight_layout()
plt.show()
Gives