For a new node.js project I\'m working on, I\'m thinking about switching over from a cookie based session approach (by this, I mean, storing an id to a key-value store conta
Late to the party, MY two cents are given below after some research. During logout, make sure following things are happening...
Clear the client storage/session
Update the user table last login date-time and logout date-time whenever login or logout happens respectively. So login date time always should be greater than logout (Or keep logout date null if the current status is login and not yet logged out)
This is way far simple than keeping additional table of blacklist and purging regularly. Multiple device support requires additional table to keep loggedIn, logout dates with some additional details like OS-or client details.
I thought about using a messaging system like kafka. Let me explain:
You could have one micro service (let call it userMgmtMs service) for example which is responsible for the login
and logout
and to produce the JWT token. This token then gets passed to the client.
Now the client can use this token to call different micro services (lets call it pricesMs), within pricesMs there will be NO database check to the users
table from which the initial token creation was triggered. This database has only to exist in userMgmtMs. Also the JWT token should include the permissions / roles so that the pricesMs do not need to lookup anything from the DB to allow spring security to work.
Instead of going to the DB in the pricesMs the JwtRequestFilter could provide a UserDetails object created by the data provided in the JWT token (without the password obviously).
So, how to logout or invalidate a token? Since we do not wanna call the database of userMgmtMs with every request for priecesMs (which would introduce quite a lot of unwanted dependencies) a solution could be to use this token blacklist.
Instead of keeping this blacklist central and haveing a dependency on one table from all microservices, I propose to use a kafka message queue.
The userMgmtMs is still responsible for the logout
and once this is done it puts it into its own blacklist (a table NOT shared among microservices). In addition it sends a kafka event with the content of this token to a internal kafka service where all other microservices are subscribed to.
Once the other microservices receive the kafka event they will put it as well in their internal blacklist.
Even if some microservices are down at the time of logout they will eventually go up again and will receive the message at a later state.
Since kafka is developed so that clients have their own reference which messages they did read it is ensured that no client, down or up will miss any of this invalid tokens.
The only issue again what I can think of is that the kafka messaging service will again introduce a single point of failure. But it is kind of reversed because if we have one global table where all invalid JWT tokens are saved and this db or micro service is down nothing works. With the kafka approach + client side deletion of JWT tokens for a normal user logout a downtime of kafka would in most cases not even be noticeable. Since the black lists are distributed among all microservies as an internal copy.
In the off case that you need to invalidate a user which was hacked and kafka is down this is where the problems start. In this case changing the secret as a last resort could help. Or just make sure kafka is up before doing so.
Disclaimer: I did not implement this solution yet but somehow I feel that most of the proposed solution negate the idea of the JWT tokens with having a central database lookup. So I was thinking about another solution.
Please let me know what you think, does it make sense or is there an obvious reason why it cant?
WITHOUT USING REFRESHING OF JWT...
2 scenarios of an attack come to mind. One is about compromised login credentials. And the other is an actual theft of JWT.
For compromised login credentials, when a new login happens, normally send the user an email notification. So, if the customer doesn't consent to being the one who logged in, they should be advised to do a reset of credentials, which should save to database/cache the date-time the password was last set (and set this too when user sets password during initial registration). Whenever a user action is being authorized, the date-time a user changed their password should be fetched from database/cache and compared to the date-time a given JWT was generated, and forbid the action for JWTs that were generated before the said date-time of credentials reset, hence essentially rendering such JWTs useless. That means save the date-time of generation of a JWT as a claim in the JWT itself. In ASP.NET Core, a policy/requirement can be used to do do this comparison, and on failure, the client is forbidden. This consequently logs out the user on the backend, globally, whenever a reset of credentials is done.
For actual theft of JWT... A theft of JWT is not easy to detect but a JWT that expires easily solves this. But what can be done to stop the attacker before the JWT expires? It is with an actual global logout. It is similar to what was described above for credentials reset. For this, normally save on database/cache the date-time a user initiated a global logout, and on authorizing a user action, get it and compare it to the date-time of generation of a given JWT too, and forbid the action for JWTs that were generated before the said date-time of global logout, hence essentially rendering such JWTs useless. This can be done using a policy/requirement in ASP.NET Core, as previously described.
Now, how do you detect the theft of JWT? My answer to this for now is to occasionally alert user to globally log out and log in again, as this would definitely log the attacker out.
I would keep a record of the jwt version number on the user model. New jwt tokens would set their version to this.
When you validate the jwt, simply check that it has a version number equal to the users current jwt version.
Any time you want to invalidate old jwts, just bump the users jwt version number.
In this example, I am assuming the end user also has an account. If this isn't he case, then the rest of the approach is unlikely to work.
When you create the JWT, persist it in the database, associated with the account that is logging in. This does mean that just from the JWT you could pull out additional information about the user, so depending on the environment, this may or may not be OK.
On every request after, not only do you perform the standard validation that (I hope) comes with what ever framework you use (that validates the JWT is valid), it also includes soemthing like the user ID or another token (that needs to match that in the database).
When you log out, delete the cookie (if using) and invalidate the JWT (string) from the database. If the cookie can't be deleted from the client side, then at least the log out process will ensure the token is destroyed.
I found this approach, coupled with another unique identifier (so there are 2 persist items in the database and are available to the front end) with the session to be very resilient
I too have been researching this question, and while none of the ideas below are complete solutions, they might help others rule out ideas, or provide further ones.
1) Simply remove the token from the client
Obviously this does nothing for server side security, but it does stop an attacker by removing the token from existence (ie. they would have to have stolen the token prior to logout).
2) Create a token blocklist
You could store the invalid tokens until their initial expiry date, and compare them against incoming requests. This seems to negate the reason for going fully token based in the first place though, as you would need to touch the database for every request. The storage size would likely be lower though, as you would only need to store tokens that were between logout & expiry time (this is a gut feeling, and is definitely dependent on context).
3) Just keep token expiry times short and rotate them often
If you keep the token expiry times at short enough intervals, and have the running client keep track and request updates when necessary, number 1 would effectively work as a complete logout system. The problem with this method, is that it makes it impossible to keep the user logged in between closes of the client code (depending on how long you make the expiry interval).
Contingency Plans
If there ever was an emergency, or a user token was compromised, one thing you could do is allow the user to change an underlying user lookup ID with their login credentials. This would render all associated tokens invalid, as the associated user would no longer be able to be found.
I also wanted to note that it is a good idea to include the last login date with the token, so that you are able to enforce a relogin after some distant period of time.
In terms of similarities/differences with regards to attacks using tokens, this post addresses the question: https://github.com/dentarg/blog/blob/master/_posts/2014-01-07-angularjs-authentication-with-cookies-vs-token.markdown