I have a pandas DataFrame with 4 columns and I want to create a new DataFrame that only has three of the columns. This question is similar
As far as I can tell, you don't necessarily need to specify the axis when using the filter function.
new = old.filter(['A','B','D'])
returns the same dataframe as
new = old.filter(['A','B','D'], axis=1)
There is a way of doing this and it actually looks similar to R
new = old[['A', 'C', 'D']].copy()
Here you are just selecting the columns you want from the original data frame and creating a variable for those. If you want to modify the new dataframe at all you'll probably want to use .copy()
to avoid a SettingWithCopyWarning
.
An alternative method is to use filter
which will create a copy by default:
new = old.filter(['A','B','D'], axis=1)
Finally, depending on the number of columns in your original dataframe, it might be more succinct to express this using a drop
(this will also create a copy by default):
new = old.drop('B', axis=1)
The easiest way is
new = old[['A','C','D']]
.
Another simpler way seems to be:
new = pd.DataFrame([old.A, old.B, old.C]).transpose()
where old.column_name
will give you a series.
Make a list of all the column-series you want to retain and pass it to the DataFrame constructor. We need to do a transpose to adjust the shape.
In [14]:pd.DataFrame([old.A, old.B, old.C]).transpose()
Out[14]:
A B C
0 4 10 100
1 5 20 50
Generic functional form
def select_columns(data_frame, column_names):
new_frame = data_frame.loc[:, column_names]
return new_frame
Specific for your problem above
selected_columns = ['A', 'C', 'D']
new = select_columns(old, selected_columns)
columns by index:
# selected column index: 1, 6, 7
new = old.iloc[: , [1, 6, 7]].copy()