I would like to know if pytorch
is using my GPU. It\'s possible to detect with nvidia-smi
if there is any activity from the GPU during the process,
As it hasn't been proposed here, I'm adding a method using torch.device, as this is quite handy, also when initializing tensors on the correct device
.
# setting device on GPU if available, else CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print()
#Additional Info when using cuda
if device.type == 'cuda':
print(torch.cuda.get_device_name(0))
print('Memory Usage:')
print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB')
print('Cached: ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')
Edit: torch.cuda.memory_cached
has been renamed to torch.cuda.memory_reserved
. So use memory_cached
for older versions.
Output:
Using device: cuda
Tesla K80
Memory Usage:
Allocated: 0.3 GB
Cached: 0.6 GB
As mentioned above, using device
it is possible to:
To move tensors to the respective device
:
torch.rand(10).to(device)
To create a tensor directly on the device
:
torch.rand(10, device=device)
Which makes switching between CPU and GPU comfortable without changing the actual code.
As there has been some questions and confusion about the cached and allocated memory I'm adding some additional information about it:
torch.cuda.max_memory_cached(device=None)
Returns the maximum GPU memory managed by the caching allocator in bytes for a
given device.
torch.cuda.memory_allocated(device=None)
Returns the current GPU memory usage by tensors in bytes for a given device.
You can either directly hand over a device
as specified further above in the post or you can leave it None and it will use the current_device().
Additional note: Old graphic cards with Cuda compute capability 3.0 or lower may be visible but cannot be used by Pytorch!
Thanks to hekimgil for pointing this out! - "Found GPU0 GeForce GT 750M which is of cuda capability 3.0. PyTorch no longer supports this GPU because it is too old. The minimum cuda capability that we support is 3.5."
To check if there is a GPU available:
torch.cuda.is_available()
If the above function returns False
,
CUDA_VISIBLE_DEVICES
. When the value of CUDA_VISIBLE_DEVICES
is -1, then all your devices are being hidden. You can check that value in code with this line: os.environ['CUDA_VISIBLE_DEVICES']
If the above function returns True
that does not necessarily mean that you are using the GPU. In Pytorch you can allocate tensors to devices when you create them. By default, tensors get allocated to the cpu
. To check where your tensor is allocated do:
# assuming that 'a' is a tensor created somewhere else
a.device # returns the device where the tensor is allocated
Note that you cannot operate on tensors allocated in different devices. To see how to allocate a tensor to the GPU, see here: https://pytorch.org/docs/stable/notes/cuda.html
Create a tensor on the GPU as follows:
$ python
>>> import torch
>>> print(torch.rand(3,3).cuda())
Do not quit, open another terminal and check if the python process is using the GPU using:
$ nvidia-smi
This is going to work :
In [1]: import torch
In [2]: torch.cuda.current_device()
Out[2]: 0
In [3]: torch.cuda.device(0)
Out[3]: <torch.cuda.device at 0x7efce0b03be0>
In [4]: torch.cuda.device_count()
Out[4]: 1
In [5]: torch.cuda.get_device_name(0)
Out[5]: 'GeForce GTX 950M'
In [6]: torch.cuda.is_available()
Out[6]: True
This tells me the GPU GeForce GTX 950M
is being used by PyTorch
.