Given an NxN binary matrix (containing only 0\'s or 1\'s), how can we go about finding largest rectangle containing all 0\'s?
Example:
I
0
To be complete, here's the C# version which outputs the rectangle coordinates. It's based on dmarra's answer but without any other dependencies. There's only the function bool GetPixel(int x, int y), which returns true when a pixel is set at the coordinates x,y.
public struct INTRECT
{
public int Left, Right, Top, Bottom;
public INTRECT(int aLeft, int aTop, int aRight, int aBottom)
{
Left = aLeft;
Top = aTop;
Right = aRight;
Bottom = aBottom;
}
public int Width { get { return (Right - Left + 1); } }
public int Height { get { return (Bottom - Top + 1); } }
public bool IsEmpty { get { return Left == 0 && Right == 0 && Top == 0 && Bottom == 0; } }
public static bool operator ==(INTRECT lhs, INTRECT rhs)
{
return lhs.Left == rhs.Left && lhs.Top == rhs.Top && lhs.Right == rhs.Right && lhs.Bottom == rhs.Bottom;
}
public static bool operator !=(INTRECT lhs, INTRECT rhs)
{
return !(lhs == rhs);
}
public override bool Equals(Object obj)
{
return obj is INTRECT && this == (INTRECT)obj;
}
public bool Equals(INTRECT obj)
{
return this == obj;
}
public override int GetHashCode()
{
return Left.GetHashCode() ^ Right.GetHashCode() ^ Top.GetHashCode() ^ Bottom.GetHashCode();
}
}
public INTRECT GetMaximumFreeRectangle()
{
int XEnd = 0;
int YStart = 0;
int MaxRectTop = 0;
INTRECT MaxRect = new INTRECT();
// STEP 1:
// build a seed histogram using the first row of grid points
// example: [true, true, false, true] = [1,1,0,1]
int[] hist = new int[Height];
for (int y = 0; y < Height; y++)
{
if (!GetPixel(0, y))
{
hist[y] = 1;
}
}
// STEP 2:
// get a starting max area from the seed histogram we created above.
// using the example from above, this value would be [1, 1], as the only valid area is a single point.
// another example for [0,0,0,1,0,0] would be [1, 3], because the largest area of contiguous free space is 3.
// Note that at this step, the heigh fo the found rectangle will always be 1 because we are operating on
// a single row of data.
Tuple<int, int> maxSize = MaxRectSize(hist, out YStart);
int maxArea = (int)(maxSize.Item1 * maxSize.Item2);
MaxRectTop = YStart;
// STEP 3:
// build histograms for each additional row, re-testing for new possible max rectangluar areas
for (int x = 1; x < Width; x++)
{
// build a new histogram for this row. the values of this row are
// 0 if the current grid point is occupied; otherwise, it is 1 + the value
// of the previously found historgram value for the previous position.
// What this does is effectly keep track of the height of continous avilable spaces.
// EXAMPLE:
// Given the following grid data (where 1 means occupied, and 0 means free; for clairty):
// INPUT: OUTPUT:
// 1.) [0,0,1,0] = [1,1,0,1]
// 2.) [0,0,1,0] = [2,2,0,2]
// 3.) [1,1,0,1] = [0,0,1,0]
//
// As such, you'll notice position 1,0 (row 1, column 0) is 2, because this is the height of contiguous
// free space.
for (int y = 0; y < Height; y++)
{
if (!GetPixel(x, y))
{
hist[y]++;
}
else
{
hist[y] = 0;
}
}
// find the maximum size of the current histogram. If it happens to be larger
// that the currently recorded max size, then it is the new max size.
Tuple<int, int> maxSizeTemp = MaxRectSize(hist, out YStart);
int tempArea = (int)(maxSizeTemp.Item1 * maxSizeTemp.Item2);
if (tempArea > maxArea)
{
maxSize = maxSizeTemp;
maxArea = tempArea;
MaxRectTop = YStart;
XEnd = x;
}
}
MaxRect.Left = XEnd - maxSize.Item1 + 1;
MaxRect.Top = MaxRectTop;
MaxRect.Right = XEnd;
MaxRect.Bottom = MaxRectTop + maxSize.Item2 - 1;
// at this point, we know the max size
return MaxRect;
}
private Tuple<int, int> MaxRectSize(int[] histogram, out int YStart)
{
Tuple<int, int> maxSize = new Tuple<int, int>(0, 0);
int maxArea = 0;
Stack<Tuple<int, int>> stack = new Stack<Tuple<int, int>>();
int x = 0;
YStart = 0;
for (x = 0; x < histogram.Length; x++)
{
int start = x;
int height = histogram[x];
while (true)
{
if (stack.Count == 0 || height > stack.Peek().Item2)
{
stack.Push(new Tuple<int, int>(start, height));
}
else if (height < stack.Peek().Item2)
{
int tempArea = (int)(stack.Peek().Item2 * (x - stack.Peek().Item1));
if (tempArea > maxArea)
{
YStart = stack.Peek().Item1;
maxSize = new Tuple<int, int>(stack.Peek().Item2, (x - stack.Peek().Item1));
maxArea = tempArea;
}
Tuple<int, int> popped = stack.Pop();
start = (int)popped.Item1;
continue;
}
break;
}
}
foreach (Tuple<int, int> data in stack)
{
int tempArea = (int)(data.Item2 * (x - data.Item1));
if (tempArea > maxArea)
{
YStart = data.Item1;
maxSize = new Tuple<int, int>(data.Item2, (x - data.Item1));
maxArea = tempArea;
}
}
return maxSize;
}
Solution with space complexity O(columns) [Can be modified to O(rows) also] and time complexity O(rows*columns)
public int maximalRectangle(char[][] matrix) {
int m = matrix.length;
if (m == 0)
return 0;
int n = matrix[0].length;
int maxArea = 0;
int[] aux = new int[n];
for (int i = 0; i < n; i++) {
aux[i] = 0;
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
aux[j] = matrix[i][j] - '0' + aux[j];
maxArea = Math.max(maxArea, maxAreaHist(aux));
}
}
return maxArea;
}
public int maxAreaHist(int[] heights) {
int n = heights.length;
Stack<Integer> stack = new Stack<Integer>();
stack.push(0);
int maxRect = heights[0];
int top = 0;
int leftSideArea = 0;
int rightSideArea = heights[0];
for (int i = 1; i < n; i++) {
if (stack.isEmpty() || heights[i] >= heights[stack.peek()]) {
stack.push(i);
} else {
while (!stack.isEmpty() && heights[stack.peek()] > heights[i]) {
top = stack.pop();
rightSideArea = heights[top] * (i - top);
leftSideArea = 0;
if (!stack.isEmpty()) {
leftSideArea = heights[top] * (top - stack.peek() - 1);
} else {
leftSideArea = heights[top] * top;
}
maxRect = Math.max(maxRect, leftSideArea + rightSideArea);
}
stack.push(i);
}
}
while (!stack.isEmpty()) {
top = stack.pop();
rightSideArea = heights[top] * (n - top);
leftSideArea = 0;
if (!stack.isEmpty()) {
leftSideArea = heights[top] * (top - stack.peek() - 1);
} else {
leftSideArea = heights[top] * top;
}
maxRect = Math.max(maxRect, leftSideArea + rightSideArea);
}
return maxRect;
}
But I get Time Limite exceeded excpetion when I try this on LeetCode. Is there any less complex solution?