I have a module that defines three types and and some operations on them.
In a separate module, I want to define an algorithm that operates on either one of these
Fortran does not have templates, but you can put the code common to the functions handling different types in an include file as a kludge to simulate templates, as shown in this code:
! file "cumul.inc"
! function cumul(xx) result(yy)
! return in yy(:) the cumulative sum of xx(:)
! type, intent(in) :: xx(:)
! type :: yy(size(xx))
integer :: i,n
yy = 0
n = size(xx)
if (n < 1) return
yy(1) = xx(1)
do i=2,n
yy(i) = yy(i-1) + xx(i)
end do
return
! end function cumul
! end file "cumul.inc"
module foo
implicit none
integer, parameter :: sp = kind(1.0), dp = kind(1.0d0)
interface cumul
module procedure cumul_double,cumul_real,cumul_int
end interface cumul
contains
!
function cumul_double(xx) result(yy)
real(kind=dp), intent(in) :: xx(:)
real(kind=dp) :: yy(size(xx))
include "cumul.inc"
end function cumul_double
!
function cumul_real(xx) result(yy)
real(kind=sp), intent(in) :: xx(:)
real(kind=sp) :: yy(size(xx))
include "cumul.inc"
end function cumul_real
!
function cumul_int(xx) result(yy)
integer, intent(in) :: xx(:)
integer :: yy(size(xx))
include "cumul.inc"
end function cumul_int
end module foo
program xcumul
use foo, only: cumul
print*,cumul([10,20,30])
print*,cumul(sin([10.0,20.0,30.0]))
print*,cumul(sin([10.0d0,20.0d0,30.0d0]))
end program xcumul
! output:
! 10 30 60
! -0.5440211 0.36892414 -0.6191075
! -0.5440211108893698 0.3689241398382579 -0.6191074842546039
The tool mentioned in the paper
Car, David and Michael List (2010). PyF95++: A Templating Capability for the Fortran 95/2003 Language. ACM Fortran Forum 29(1), 2-20.
may interest you. I have not tried it.