I have the following matrices sigma and sigmad:
sigma:
1.9958 0.7250
0.7250 1.3167
sigmad:
4.8889
Any (nonzero) scalar multiple of an eigenvector will also be an eigenvector; only the direction is meaningful, not the overall normalization. Different routines use different conventions -- often you'll see the magnitude set to 1, or the maximum value set to 1 or -1 -- and some routines don't even bother being internally consistent for performance reasons. Your two different results are multiples of each other:
In [227]: sc = array([[-1., -0.5614], [-0.4352, 1. ]])
In [228]: ml = array([[-.5897, -0.5278], [-0.2564, 0.94]])
In [229]: sc/ml
Out[229]:
array([[ 1.69577751, 1.06366048],
[ 1.69734789, 1.06382979]])
and so they're actually the same eigenvectors. Think of the matrix as an operator which changes a vector: the eigenvectors are the special directions where a vector pointing that way won't be twisted by the matrix, and the eigenvalues are the factors measuring how much the matrix expands or contracts the vector.