This Python code:
import numpy as p
def firstfunction():
UnFilteredDuringExSummaryOfMeansArray = []
MeanOutputHeader=[\'TestID\',\'
The Python ValueError:
ValueError: setting an array element with a sequence.
Means exactly what it says, you're trying to cram a sequence of numbers into a single number slot. It can be thrown under various circumstances.
1. When you pass a python tuple or list to be interpreted as a numpy array element:
import numpy
numpy.array([1,2,3]) #good
numpy.array([1, (2,3)]) #Fail, can't convert a tuple into a numpy
#array element
numpy.mean([5,(6+7)]) #good
numpy.mean([5,tuple(range(2))]) #Fail, can't convert a tuple into a numpy
#array element
def foo():
return 3
numpy.array([2, foo()]) #good
def foo():
return [3,4]
numpy.array([2, foo()]) #Fail, can't convert a list into a numpy
#array element
2. By trying to cram a numpy array length > 1 into a numpy array element:
x = np.array([1,2,3])
x[0] = np.array([4]) #good
x = np.array([1,2,3])
x[0] = np.array([4,5]) #Fail, can't convert the numpy array to fit
#into a numpy array element
A numpy array is being created, and numpy doesn't know how to cram multivalued tuples or arrays into single element slots. It expects whatever you give it to evaluate to a single number, if it doesn't, Numpy responds that it doesn't know how to set an array element with a sequence.
When the shape is not regular or the elements have different data types, the dtype
argument passed to np.array only can be object
.
import numpy as np
# arr1 = np.array([[10, 20.], [30], [40]], dtype=np.float32) # error
arr2 = np.array([[10, 20.], [30], [40]]) # OK, and the dtype is object
arr3 = np.array([[10, 20.], 'hello']) # OK, and the dtype is also object
``
In my case , I got this Error in Tensorflow , Reason was i was trying to feed a array with different length or sequences :
example :
import tensorflow as tf
input_x = tf.placeholder(tf.int32,[None,None])
word_embedding = tf.get_variable('embeddin',shape=[len(vocab_),110],dtype=tf.float32,initializer=tf.random_uniform_initializer(-0.01,0.01))
embedding_look=tf.nn.embedding_lookup(word_embedding,input_x)
with tf.Session() as tt:
tt.run(tf.global_variables_initializer())
a,b=tt.run([word_embedding,embedding_look],feed_dict={input_x:example_array})
print(b)
And if my array is :
example_array = [[1,2,3],[1,2]]
Then i will get error :
ValueError: setting an array element with a sequence.
but if i do padding then :
example_array = [[1,2,3],[1,2,0]]
Now it's working.
In my case, the problem was with a scatterplot of a dataframe X[]:
ax.scatter(X[:,0],X[:,1],c=colors,
cmap=CMAP, edgecolor='k', s=40) #c=y[:,0],
#ValueError: setting an array element with a sequence.
#Fix with .toarray():
colors = 'br'
y = label_binarize(y, classes=['Irrelevant','Relevant'])
ax.scatter(X[:,0].toarray(),X[:,1].toarray(),c=colors,
cmap=CMAP, edgecolor='k', s=40)
In my case, the problem was another. I was trying convert lists of lists of int to array. The problem was that there was one list with a different length than others. If you want to prove it, you must do:
print([i for i,x in enumerate(list) if len(x) != 560])
In my case, the length reference was 560.
for those who are having trouble with similar problems in Numpy, a very simple solution would be:
defining dtype=object
when defining an array for assigning values to it. for instance:
out = np.empty_like(lil_img, dtype=object)