I am trying to implement a custom UDT and be able to reference it from Spark SQL (as explained in the Spark SQL whitepaper, section 4.4.2).
The real example is to h
You get this errors because schema defined by sqlType
is never exposed and is not intended to be accessed directly. It simply provides a way to express a complex data types using native Spark SQL types.
You can access individual attributes using UDFs but first lets show that the internal structure is indeed not exposed:
dataFrame.printSchema
// root
// |-- person_id: integer (nullable = true)
// |-- person: mockperso (nullable = true)
To create UDF we need functions which take as an argument an object of a type represented by a given UDT:
import org.apache.spark.sql.functions.udf
val getFirstName = (person: MockPerson) => person.getFirstName
val getLastName = (person: MockPerson) => person.getLastName
val getAge = (person: MockPerson) => person.getAge
which can be wrapped using udf
function:
val getFirstNameUDF = udf(getFirstName)
val getLastNameUDF = udf(getLastName)
val getAgeUDF = udf(getAge)
dataFrame.select(
getFirstNameUDF($"person").alias("first_name"),
getLastNameUDF($"person").alias("last_name"),
getAgeUDF($"person").alias("age")
).show()
// +----------+---------+---+
// |first_name|last_name|age|
// +----------+---------+---+
// | First1| Last1| 1|
// | First2| Last2| 2|
// +----------+---------+---+
To use these with raw SQL you have register functions through SQLContext
:
sqlContext.udf.register("first_name", getFirstName)
sqlContext.udf.register("last_name", getLastName)
sqlContext.udf.register("age", getAge)
sqlContext.sql("""
SELECT first_name(person) AS first_name, last_name(person) AS last_name
FROM person
WHERE age(person) < 100""").show
// +----------+---------+
// |first_name|last_name|
// +----------+---------+
// | First1| Last1|
// | First2| Last2|
// +----------+---------+
Unfortunately it comes with a price tag attached. First of all every operation requires deserialization. It also substantially limits the ways in which query can be optimized. In particular any join
operation on one of these fields requires a Cartesian product.
In practice if you want to encode a complex structure, which contains attributes that can be expressed using built-in types, it is better to use StructType
:
case class Person(first_name: String, last_name: String, age: Int)
val df = sc.parallelize(
(1 to 2).map(i => (i, Person(s"First$i", s"Last$i", i)))).toDF("id", "person")
df.printSchema
// root
// |-- id: integer (nullable = false)
// |-- person: struct (nullable = true)
// | |-- first_name: string (nullable = true)
// | |-- last_name: string (nullable = true)
// | |-- age: integer (nullable = false)
df
.where($"person.age" < 100)
.select($"person.first_name", $"person.last_name")
.show
// +----------+---------+
// |first_name|last_name|
// +----------+---------+
// | First1| Last1|
// | First2| Last2|
// +----------+---------+
and reserve UDTs for actual types extensions like built-in VectorUDT
or things that can benefit from a specific representation like enumerations.