Speed up millions of regex replacements in Python 3

后端 未结 9 1208
醉酒成梦
醉酒成梦 2020-11-22 05:44

I\'m using Python 3.5.2

I have two lists

  • a list of about 750,000 \"sentences\" (long strings)
  • a list of about 20,000 \"words\" that I would l
相关标签:
9条回答
  • 2020-11-22 06:27

    TLDR

    Use this method if you want the fastest regex-based solution. For a dataset similar to the OP's, it's approximately 1000 times faster than the accepted answer.

    If you don't care about regex, use this set-based version, which is 2000 times faster than a regex union.

    Optimized Regex with Trie

    A simple Regex union approach becomes slow with many banned words, because the regex engine doesn't do a very good job of optimizing the pattern.

    It's possible to create a Trie with all the banned words and write the corresponding regex. The resulting trie or regex aren't really human-readable, but they do allow for very fast lookup and match.

    Example

    ['foobar', 'foobah', 'fooxar', 'foozap', 'fooza']
    

    The list is converted to a trie:

    {
        'f': {
            'o': {
                'o': {
                    'x': {
                        'a': {
                            'r': {
                                '': 1
                            }
                        }
                    },
                    'b': {
                        'a': {
                            'r': {
                                '': 1
                            },
                            'h': {
                                '': 1
                            }
                        }
                    },
                    'z': {
                        'a': {
                            '': 1,
                            'p': {
                                '': 1
                            }
                        }
                    }
                }
            }
        }
    }
    

    And then to this regex pattern:

    r"\bfoo(?:ba[hr]|xar|zap?)\b"
    

    The huge advantage is that to test if zoo matches, the regex engine only needs to compare the first character (it doesn't match), instead of trying the 5 words. It's a preprocess overkill for 5 words, but it shows promising results for many thousand words.

    Note that (?:) non-capturing groups are used because:

    • foobar|baz would match foobar or baz, but not foobaz
    • foo(bar|baz) would save unneeded information to a capturing group.

    Code

    Here's a slightly modified gist, which we can use as a trie.py library:

    import re
    
    
    class Trie():
        """Regex::Trie in Python. Creates a Trie out of a list of words. The trie can be exported to a Regex pattern.
        The corresponding Regex should match much faster than a simple Regex union."""
    
        def __init__(self):
            self.data = {}
    
        def add(self, word):
            ref = self.data
            for char in word:
                ref[char] = char in ref and ref[char] or {}
                ref = ref[char]
            ref[''] = 1
    
        def dump(self):
            return self.data
    
        def quote(self, char):
            return re.escape(char)
    
        def _pattern(self, pData):
            data = pData
            if "" in data and len(data.keys()) == 1:
                return None
    
            alt = []
            cc = []
            q = 0
            for char in sorted(data.keys()):
                if isinstance(data[char], dict):
                    try:
                        recurse = self._pattern(data[char])
                        alt.append(self.quote(char) + recurse)
                    except:
                        cc.append(self.quote(char))
                else:
                    q = 1
            cconly = not len(alt) > 0
    
            if len(cc) > 0:
                if len(cc) == 1:
                    alt.append(cc[0])
                else:
                    alt.append('[' + ''.join(cc) + ']')
    
            if len(alt) == 1:
                result = alt[0]
            else:
                result = "(?:" + "|".join(alt) + ")"
    
            if q:
                if cconly:
                    result += "?"
                else:
                    result = "(?:%s)?" % result
            return result
    
        def pattern(self):
            return self._pattern(self.dump())
    

    Test

    Here's a small test (the same as this one):

    # Encoding: utf-8
    import re
    import timeit
    import random
    from trie import Trie
    
    with open('/usr/share/dict/american-english') as wordbook:
        banned_words = [word.strip().lower() for word in wordbook]
        random.shuffle(banned_words)
    
    test_words = [
        ("Surely not a word", "#surely_NöTäWORD_so_regex_engine_can_return_fast"),
        ("First word", banned_words[0]),
        ("Last word", banned_words[-1]),
        ("Almost a word", "couldbeaword")
    ]
    
    def trie_regex_from_words(words):
        trie = Trie()
        for word in words:
            trie.add(word)
        return re.compile(r"\b" + trie.pattern() + r"\b", re.IGNORECASE)
    
    def find(word):
        def fun():
            return union.match(word)
        return fun
    
    for exp in range(1, 6):
        print("\nTrieRegex of %d words" % 10**exp)
        union = trie_regex_from_words(banned_words[:10**exp])
        for description, test_word in test_words:
            time = timeit.timeit(find(test_word), number=1000) * 1000
            print("  %s : %.1fms" % (description, time))
    

    It outputs:

    TrieRegex of 10 words
      Surely not a word : 0.3ms
      First word : 0.4ms
      Last word : 0.5ms
      Almost a word : 0.5ms
    
    TrieRegex of 100 words
      Surely not a word : 0.3ms
      First word : 0.5ms
      Last word : 0.9ms
      Almost a word : 0.6ms
    
    TrieRegex of 1000 words
      Surely not a word : 0.3ms
      First word : 0.7ms
      Last word : 0.9ms
      Almost a word : 1.1ms
    
    TrieRegex of 10000 words
      Surely not a word : 0.1ms
      First word : 1.0ms
      Last word : 1.2ms
      Almost a word : 1.2ms
    
    TrieRegex of 100000 words
      Surely not a word : 0.3ms
      First word : 1.2ms
      Last word : 0.9ms
      Almost a word : 1.6ms
    

    For info, the regex begins like this:

    (?:a(?:(?:\'s|a(?:\'s|chen|liyah(?:\'s)?|r(?:dvark(?:(?:\'s|s))?|on))|b(?:\'s|a(?:c(?:us(?:(?:\'s|es))?|[ik])|ft|lone(?:(?:\'s|s))?|ndon(?:(?:ed|ing|ment(?:\'s)?|s))?|s(?:e(?:(?:ment(?:\'s)?|[ds]))?|h(?:(?:e[ds]|ing))?|ing)|t(?:e(?:(?:ment(?:\'s)?|[ds]))?|ing|toir(?:(?:\'s|s))?))|b(?:as(?:id)?|e(?:ss(?:(?:\'s|es))?|y(?:(?:\'s|s))?)|ot(?:(?:\'s|t(?:\'s)?|s))?|reviat(?:e[ds]?|i(?:ng|on(?:(?:\'s|s))?))|y(?:\'s)?|\é(?:(?:\'s|s))?)|d(?:icat(?:e[ds]?|i(?:ng|on(?:(?:\'s|s))?))|om(?:en(?:(?:\'s|s))?|inal)|u(?:ct(?:(?:ed|i(?:ng|on(?:(?:\'s|s))?)|or(?:(?:\'s|s))?|s))?|l(?:\'s)?))|e(?:(?:\'s|am|l(?:(?:\'s|ard|son(?:\'s)?))?|r(?:deen(?:\'s)?|nathy(?:\'s)?|ra(?:nt|tion(?:(?:\'s|s))?))|t(?:(?:t(?:e(?:r(?:(?:\'s|s))?|d)|ing|or(?:(?:\'s|s))?)|s))?|yance(?:\'s)?|d))?|hor(?:(?:r(?:e(?:n(?:ce(?:\'s)?|t)|d)|ing)|s))?|i(?:d(?:e[ds]?|ing|jan(?:\'s)?)|gail|l(?:ene|it(?:ies|y(?:\'s)?)))|j(?:ect(?:ly)?|ur(?:ation(?:(?:\'s|s))?|e[ds]?|ing))|l(?:a(?:tive(?:(?:\'s|s))?|ze)|e(?:(?:st|r))?|oom|ution(?:(?:\'s|s))?|y)|m\'s|n(?:e(?:gat(?:e[ds]?|i(?:ng|on(?:\'s)?))|r(?:\'s)?)|ormal(?:(?:it(?:ies|y(?:\'s)?)|ly))?)|o(?:ard|de(?:(?:\'s|s))?|li(?:sh(?:(?:e[ds]|ing))?|tion(?:(?:\'s|ist(?:(?:\'s|s))?))?)|mina(?:bl[ey]|t(?:e[ds]?|i(?:ng|on(?:(?:\'s|s))?)))|r(?:igin(?:al(?:(?:\'s|s))?|e(?:(?:\'s|s))?)|t(?:(?:ed|i(?:ng|on(?:(?:\'s|ist(?:(?:\'s|s))?|s))?|ve)|s))?)|u(?:nd(?:(?:ed|ing|s))?|t)|ve(?:(?:\'s|board))?)|r(?:a(?:cadabra(?:\'s)?|d(?:e[ds]?|ing)|ham(?:\'s)?|m(?:(?:\'s|s))?|si(?:on(?:(?:\'s|s))?|ve(?:(?:\'s|ly|ness(?:\'s)?|s))?))|east|idg(?:e(?:(?:ment(?:(?:\'s|s))?|[ds]))?|ing|ment(?:(?:\'s|s))?)|o(?:ad|gat(?:e[ds]?|i(?:ng|on(?:(?:\'s|s))?)))|upt(?:(?:e(?:st|r)|ly|ness(?:\'s)?))?)|s(?:alom|c(?:ess(?:(?:\'s|e[ds]|ing))?|issa(?:(?:\'s|[es]))?|ond(?:(?:ed|ing|s))?)|en(?:ce(?:(?:\'s|s))?|t(?:(?:e(?:e(?:(?:\'s|ism(?:\'s)?|s))?|d)|ing|ly|s))?)|inth(?:(?:\'s|e(?:\'s)?))?|o(?:l(?:ut(?:e(?:(?:\'s|ly|st?))?|i(?:on(?:\'s)?|sm(?:\'s)?))|v(?:e[ds]?|ing))|r(?:b(?:(?:e(?:n(?:cy(?:\'s)?|t(?:(?:\'s|s))?)|d)|ing|s))?|pti...

    It's really unreadable, but for a list of 100000 banned words, this Trie regex is 1000 times faster than a simple regex union!

    Here's a diagram of the complete trie, exported with trie-python-graphviz and graphviz twopi:

    0 讨论(0)
  • 2020-11-22 06:28

    Concatenate all your sentences into one document. Use any implementation of the Aho-Corasick algorithm (here's one) to locate all your "bad" words. Traverse the file, replacing each bad word, updating the offsets of found words that follow etc.

    0 讨论(0)
  • 2020-11-22 06:31

    One thing you might want to try is pre-processing the sentences to encode the word boundaries. Basically turn each sentence into a list of words by splitting on word boundaries.

    This should be faster, because to process a sentence, you just have to step through each of the words and check if it's a match.

    Currently the regex search is having to go through the entire string again each time, looking for word boundaries, and then "discarding" the result of this work before the next pass.

    0 讨论(0)
提交回复
热议问题