I am new to Numpy and want to replace part of a matrix. For example, I have two matrices, A, B generated by numpy
In [333]: A = ones((5,5))
In [334]: A
Out[
The following function replaces an arbitrary non-contiguous part of the matrix with another matrix.
def replace_submatrix(mat, ind1, ind2, mat_replace):
for i, index in enumerate(ind1):
mat[index, ind2] = mat_replace[i, :]
return mat
Now an example of the application. We replace indices [1, 3] x [0, 3] (i.e. ind1
x ind2
) of the empty 4 x 4 array x
with the 2 x 2 array y
of 4 different values:
x = np.full((4, 4), 0)
x
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
y = np.array([[1, 2], [5, 9]])
y
array([[1, 2],
[5, 9]])
ind1 = [1, 3]
ind2 = [0, 3]
res = replace_submatrix(x, ind1, ind2, y)
res
array([[0, 0, 0, 0],
[1, 0, 0, 2],
[0, 0, 0, 0],
[5, 0, 0, 9]])
Here is how you can do it:
>>> A[3:5, 3:5] = B
>>> A
array([[ 1. , 1. , 1. , 1. , 1. ],
[ 1. , 1. , 1. , 1. , 1. ],
[ 1. , 1. , 1. , 1. , 1. ],
[ 1. , 1. , 1. , 0.1, 0.2],
[ 1. , 1. , 1. , 0.3, 0.4]])
For the first one:
In [13]: A[-B.shape[0]:, -B.shape[1]:] = B
In [14]: A
Out[14]:
array([[ 1. , 1. , 1. , 1. , 1. ],
[ 1. , 1. , 1. , 1. , 1. ],
[ 1. , 1. , 1. , 1. , 1. ],
[ 1. , 1. , 1. , 0.1, 0.2],
[ 1. , 1. , 1. , 0.3, 0.4]])
For second:
In [15]: A = np.ones((5,5))
In [16]: A[:B.shape[0], -B.shape[1]:] = B
In [17]: A
Out[17]:
array([[ 1. , 1. , 1. , 0.1, 0.2],
[ 1. , 1. , 1. , 0.3, 0.4],
[ 1. , 1. , 1. , 1. , 1. ],
[ 1. , 1. , 1. , 1. , 1. ],
[ 1. , 1. , 1. , 1. , 1. ]])
In general, for example, for non-contiguous rows/cols
use numpy.putmask(a, mask, values)
(Sets a.flat[n] = values[n] for each n where mask.flat[n]==True
)
For example
In [1]: a = np.zeros((3, 3))
Out [1]: a
array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
In [2]: values = np.ones((2, 2))
Out [2]: values
array([[1., 1.],
[1., 1.]])
In [3]: mask = np.zeros((3, 3), dtype=bool)
In [4]: mask[0,0] = mask[0,1] = mask[1,1] = mask[2,2] = True
Out [4]: mask
array([[ True, True, False],
[False, True, False],
[False, False, True]])
In [5] np.putmask(a, mask, values)
Out [5] a
array([[1., 1., 0.],
[0., 1., 0.],
[0., 0., 1.]])