Comparing 2 columns of two Python Pandas dataframes and getting the common rows

前端 未结 4 984
旧巷少年郎
旧巷少年郎 2020-12-03 18:43

I have 2 Dataframe as follows:

DF1=
    A    B   C    D
0   AA   BA  KK   0
1   AD   BD  LL   0
2   AF   BF  MM   0

DF2=
    K    L
0   AA   BA
1   AD   BF
         


        
相关标签:
4条回答
  • 2020-12-03 19:41
    df1['ColumnName'].isin(df2['ColumnName']).value_counts()
    
    0 讨论(0)
  • 2020-12-03 19:42

    This would be easier if you renamed the columns of df2 and then you can compare row-wise:

    In [35]:
    
    df2.columns = ['A', 'B']
    df2
    Out[35]:
        A   B
    0  AA  BA
    1  AD  BF
    2  AF  BF
    In [38]:
    
    df1['D'] = (df1[['A', 'B']] == df2).all(axis=1).astype(int)
    df1
    Out[38]:
        A   B   C  D
    0  AA  BA  KK  1
    1  AD  BD  LL  0
    2  AF  BF  MM  1
    
    0 讨论(0)
  • 2020-12-03 19:43

    DF1.merge(right=DF2,left_on=[DF1.A,DF1.B],right_on=[DF2.K,DF2.L], indicator=True, how='left')

    gives:

    A B C D K L _merge 0 AA BA KK 0 AA BA both 1 AD BD LL 0 NaN NaN left_only 2 AF BF MM 0 AF BF both

    So, as above, indicator does the job.

    Peter

    0 讨论(0)
  • 2020-12-03 19:47

    This is how I solved it:

    df1 = pd.DataFrame({"A":['AA','AD','AD'], "B":['BA','BD','BF']})
    df2 = pd.DataFrame({"A":['AA','AD'], 'B':['BA','BF']})
    df1['compressed']=df1.apply(lambda x:'%s%s' % (x['A'],x['B']),axis=1)
    df2['compressed']=df2.apply(lambda x:'%s%s' % (x['A'],x['B']),axis=1)
    df1['Success'] = df1['compressed'].isin(df2['compressed']).astype(int)
    print df1
    
        A   B     compressed   Success
    0  AA  BA      AABA          1
    1  AD  BD      ADBD          0
    2  AD  BF      ADBF          1
    
    0 讨论(0)
提交回复
热议问题