I need to merge multiple dictionaries, here\'s what I have for instance:
dict1 = {1:{\"a\":{A}}, 2:{\"b\":{B}}}
dict2 = {2:{\"c\":{C}}, 3:{\"d\":{D}}
I had two dictionaries (a
and b
) which could each contain any number of nested dictionaries. I wanted to recursively merge them, with b
taking precedence over a
.
Considering the nested dictionaries as trees, what I wanted was:
a
so that every path to every leaf in b
would be represented in a
a
if a leaf is found in the corresponding path in b
b
leaf nodes remain leafs.The existing answers were a little complicated for my taste and left some details on the shelf. I hacked together the following, which passes unit tests for my data set.
def merge_map(a, b):
if not isinstance(a, dict) or not isinstance(b, dict):
return b
for key in b.keys():
a[key] = merge_map(a[key], b[key]) if key in a else b[key]
return a
Example (formatted for clarity):
a = {
1 : {'a': 'red',
'b': {'blue': 'fish', 'yellow': 'bear' },
'c': { 'orange': 'dog'},
},
2 : {'d': 'green'},
3: 'e'
}
b = {
1 : {'b': 'white'},
2 : {'d': 'black'},
3: 'e'
}
>>> merge_map(a, b)
{1: {'a': 'red',
'b': 'white',
'c': {'orange': 'dog'},},
2: {'d': 'black'},
3: 'e'}
The paths in b
that needed to be maintained were:
1 -> 'b' -> 'white'
2 -> 'd' -> 'black'
3 -> 'e'
.a
had the unique and non-conflicting paths of:
1 -> 'a' -> 'red'
1 -> 'c' -> 'orange' -> 'dog'
so they are still represented in the merged map.
This simple recursive procedure will merge one dictionary into another while overriding conflicting keys:
#!/usr/bin/env python2.7
def merge_dicts(dict1, dict2):
""" Recursively merges dict2 into dict1 """
if not isinstance(dict1, dict) or not isinstance(dict2, dict):
return dict2
for k in dict2:
if k in dict1:
dict1[k] = merge_dicts(dict1[k], dict2[k])
else:
dict1[k] = dict2[k]
return dict1
print (merge_dicts({1:{"a":"A"}, 2:{"b":"B"}}, {2:{"c":"C"}, 3:{"d":"D"}}))
print (merge_dicts({1:{"a":"A"}, 2:{"b":"B"}}, {1:{"a":"A"}, 2:{"b":"C"}}))
Output:
{1: {'a': 'A'}, 2: {'c': 'C', 'b': 'B'}, 3: {'d': 'D'}}
{1: {'a': 'A'}, 2: {'b': 'C'}}
If you have an unknown level of dictionaries, then I would suggest a recursive function:
def combineDicts(dictionary1, dictionary2):
output = {}
for item, value in dictionary1.iteritems():
if dictionary2.has_key(item):
if isinstance(dictionary2[item], dict):
output[item] = combineDicts(value, dictionary2.pop(item))
else:
output[item] = value
for item, value in dictionary2.iteritems():
output[item] = value
return output
Easiest way i can think of is :
#!/usr/bin/python
from copy import deepcopy
def dict_merge(a, b):
if not isinstance(b, dict):
return b
result = deepcopy(a)
for k, v in b.iteritems():
if k in result and isinstance(result[k], dict):
result[k] = dict_merge(result[k], v)
else:
result[k] = deepcopy(v)
return result
a = {1:{"a":'A'}, 2:{"b":'B'}}
b = {2:{"c":'C'}, 3:{"d":'D'}}
print dict_merge(a,b)
Output:
{1: {'a': 'A'}, 2: {'c': 'C', 'b': 'B'}, 3: {'d': 'D'}}
And just another slight variation:
Here is a pure python3 set based deep update function. It updates nested dictionaries by looping through one level at a time and calls itself to update each next level of dictionary values:
def deep_update(dict_original, dict_update):
if isinstance(dict_original, dict) and isinstance(dict_update, dict):
output=dict(dict_original)
keys_original=set(dict_original.keys())
keys_update=set(dict_update.keys())
similar_keys=keys_original.intersection(keys_update)
similar_dict={key:deep_update(dict_original[key], dict_update[key]) for key in similar_keys}
new_keys=keys_update.difference(keys_original)
new_dict={key:dict_update[key] for key in new_keys}
output.update(similar_dict)
output.update(new_dict)
return output
else:
return dict_update
A simple example:
x={'a':{'b':{'c':1, 'd':1}}}
y={'a':{'b':{'d':2, 'e':2}}, 'f':2}
print(deep_update(x, y))
>>> {'a': {'b': {'c': 1, 'd': 2, 'e': 2}}, 'f': 2}