In another question, I found out that the Assigned()
function is identical to Pointer <> nil
. It has always been my understanding that
The bottom line is that you should not be attempting to detect dangling pointers in code. If you are going to refer to pointers after they have been freed, set the pointer to nil
when you free it. But the best approach is not to refer to pointers after they have been freed.
So, how do you avoid referring to pointers after they have been freed? There are a couple of common idioms that get you a long way.
One thing I would strongly recommend is to avoid writing if Assigned()
tests into your code unless it is expected behaviour that the pointer may not be created. Your code will become hard to read and you will also lose track of whether the pointer being nil is to be expected or is a bug.
Of course we all do make mistakes and leave dangling pointers. Using FreeAndNil
is one cheap way to ensure that dangling pointer access is detected. A more effective method is to use FastMM in full debug mode. I cannot recommend this highly enough. If you are not using this wonderful tool, you should start doing so ASAP.
If you find yourself struggling with dangling pointers and you find it hard to work out why then you probably need to refactor the code to fit into one of the two idioms above.
You can draw a parallel with array indexing errors. My advice is not to check in code for validity of index. Instead use range checking and let the tools do the work and keep the code clean. The exception to this is where the input comes from outside your program, e.g. user input.
My parting shot: only ever write if Assigned
if it is normal behaviour for the pointer to be nil
.
Use a memory manager, such as FastMM, that provides debugging support, in particular to fill a block of freed memory with a given byte pattern. You can then dereference the pointer to see if it points at a memory block that starts with the byte pattern, or you can let the code run normallly ad raise an AV if it tries to access a freed memory block through a dangling pointer. The AV's reported memory address will usually be either exactly as, or close to, the byte pattern.
The core point is that the way how objects are implemented in Delphi has some built-in design drawbacks:
Integer
or TSomeRec
, or a type like PInteger = ^Integer
or PSomeRec = ^TSomeRec
, which are different types. This may sound like a neglectable technicality, but it isn't: a SomeRec: TSomeRec
denotes "this scope is the original owner of that record and controls its lifecycle", while SomeRec: PSomeRec
tells "this scope uses a transient reference to some data, but has no control over the record's lifecycle. So, as dumb it may sound, for objects there's virtually no one who has denotedly control over other objects' lifecycles. The result is - surprise - that the lifecycle state of objects may in certain situations be unclear.But if Embarcadero wanted to eliminate dangling object pointers, they would have to redesign Delphi object references:
nil
FSomeObject: TSomeObject
I would want to be able to write in e.g. SetSomeObject
: FSomeObject.OnDestruction := Self.HandleDestructionOfSomeObject
. But then FSomeObject
can't be a pointer; instead, it would have to be at least an (advanced) record typeOf course I can implement all that by myself, but that is tedious, and isn't it something that should be addressed by the language itself? They also managed to implement for x in ...
It is sometimes possible to detect when the address a pointer points to resides in a memory block that is on the heap's list of freed memory blocks. However, this requires comparing the pointer to potentially every block in the heap's free list which could contain thousands of blocks. So, this is potentially a computationally intensive operation and something you would not want to do frequently except perhaps in a severe diagnostic mode.
This technique only works while the memory block that the pointer used to point to continues to sit in the heap free list. As new objects are allocated from the heap, it is likely that the freed memory block will be removed from the heap free list and put back into active play as the home of a new, different object. The original dangling pointer still points to the same address, but the object living at that address has changed. If the newly allocated object is of the same (or compatible) type as the original object now freed, there is practically no way to know that the pointer originated as a reference to the previous object. In fact, in this very special and rare situation, the dangling pointer will actually work perfectly well. The only observable problem might be if someone notices that the data has changed out from under the pointer unexpectedly.
Unless you are allocating and freeing the same object types over and over again in rapid succession, chances are slim that the new object allocated from that freed memory block will be the same type as the original. When the types of the original and the new object are different, you have a chance of figuring out that the content has changed out from under the pointer. However, to do that you need a way to know the type of the original object that the pointer referred to. In many situations in native compiled applications, the type of the pointer variable itself is not retained at runtime. A pointer is a pointer as far as the CPU is concerned - the hardware knows very little of data types. In a severe diagnostic mode it's conceivable that you could build a lookup table to associate every pointer variable with the type allocated and assigned to it, but this is an enormous task.
That's why Assigned() is not an assertion that the pointer is valid. It just tests that the pointer is not nil.
Why did Borland create the Assigned() function to begin with? To further hide pointerisms from novice and occasional programmers. Function calls are easier to read and understand than pointer operations.
If you have an object variable in scope and it may or may not be a valid reference, FreeAndNil is what you should be using. That or fixing your code so that your object references are more tightly managed so it's never a question.
Access Violations shouldn't be thought of as an enemy. They're bugs: they mean you made a mistake that needs fixed. (Or that there's a bug in some code you're relying on, but I find most often that I'm the one who screwed up, especially when dealing with the RTL, VCL, or Win32 API.)
Nothing can find a dangling (once valid but then not) pointer. It's your responsibility to either make sure it's set to nil
when you free it's content, or to limit the scope of the pointer variable to only be available within the scope it's valid. (The second is the better solution whenever possible.)