I have tried to make a Gaussian filter in Matlab without using imfilter()
and fspecial()
.
I have tried this but result is not like the one I have w
here's an alternative:
Create the 2D-Gaussian:
function f=gaussian2d(N,sigma)
% N is grid size, sigma speaks for itself
[x y]=meshgrid(round(-N/2):round(N/2), round(-N/2):round(N/2));
f=exp(-x.^2/(2*sigma^2)-y.^2/(2*sigma^2));
f=f./sum(f(:));
Filtered image, given your image is called Im
:
filtered_signal=conv2(Im,gaussian2d(N,sig),'same');
Here's some plots:
imagesc(gaussian2d(7,2.5))
Im=rand(100);subplot(1,2,1);imagesc(Im)
subplot(1,2,2);imagesc(conv2(Im,gaussian2d(7,2.5),'same'));
This example code is slow because of the for-loops. In matlab you can better use conv2, as suggested by user:bla, or just use filter2.
I = imread('peppers.png'); %load example data
I = I(:,:,1);
N=5; %must be odd
sigma=1;
figure(1);imagesc(I);colormap gray
x=1:N;
X=exp(-(x-((N+1)/2)).^2/(2*sigma^2));
h=X'*X;
h=h./sum(h(:));
%I=filter2(h,I); %this is faster
[is,js]=size(I);
Ib = NaN(is+N-1,js+N-1); %add borders
b=(N-1)/2 +1;
Ib(b:b+is-1,b:b+js-1)=I;
I=zeros(size(I));
for i = 1:is
for j = 1:js
I(i,j)=sum(sum(Ib(i:i+N-1,j:j+N-1).*h,'omitnan'));
end
end
figure(2);imagesc(I);colormap gray