I have a problem with the type of one of my column in a pandas dataframe. Basically the column is saved in a csv file as a string, and I wanna use it as a tuple to be able t
You can use ast.literal_eval
, which will give you a tuple:
import ast
df.LABELS = df.LABELS.apply(ast.literal_eval)
If you do want a list, use:
df.LABELS.apply(lambda s: list(ast.literal_eval(s)))
Alternatively, you might consider regular expressions:
pattern = re.compile("[0-9]\.[0-9]")
df.LABELS.apply(pattern.findall)
You can try this (assuming your csv
is called filename.csv
):
df = pd.read_csv('filename.csv')
df['LABELS'] = df.LABELS.apply(lambda x: x.strip('()').split(','))
>>> df
ID LABELS
0 1 [1.0, 2.0, 2.0, 3.0, 3.0, 1.0, 4.0]
1 2 [1.0, 2.0, 2.0, 3.0, 3.0, 1.0, 4.0]
Use str.strip and str.split:
df['LABELS'] = df['LABELS'].str.strip('()').str.split(',')
But if no NaN
s here, list comprehension
working nice too:
df['LABELS'] = [x.strip('()').split(',') for x in df['LABELS']]