I notice that a pre-increment/decrement operator can be applied on a variable (like ++count
). It compiles, but it does not actually change the value of the vari
There are no post/pre increment/decrement operators in python like in languages like C.
We can see ++
or --
as multiple signs getting multiplied, like we do in maths (-1) * (-1) = (+1).
E.g.
---count
Parses as
-(-(-count)))
Which translates to
-(+count)
Because, multiplication of -
sign with -
sign is +
And finally,
-count
When you want to increment or decrement, you typically want to do that on an integer. Like so:
b++
But in Python, integers are immutable. That is you can't change them. This is because the integer objects can be used under several names. Try this:
>>> b = 5
>>> a = 5
>>> id(a)
162334512
>>> id(b)
162334512
>>> a is b
True
a and b above are actually the same object. If you incremented a, you would also increment b. That's not what you want. So you have to reassign. Like this:
b = b + 1
Or simpler:
b += 1
Which will reassign b
to b+1
. That is not an increment operator, because it does not increment b
, it reassigns it.
In short: Python behaves differently here, because it is not C, and is not a low level wrapper around machine code, but a high-level dynamic language, where increments don't make sense, and also are not as necessary as in C, where you use them every time you have a loop, for example.
Yeah, I missed ++ and -- functionality as well. A few million lines of c code engrained that kind of thinking in my old head, and rather than fight it... Here's a class I cobbled up that implements:
pre- and post-increment, pre- and post-decrement, addition,
subtraction, multiplication, division, results assignable
as integer, printable, settable.
Here 'tis:
class counter(object):
def __init__(self,v=0):
self.set(v)
def preinc(self):
self.v += 1
return self.v
def predec(self):
self.v -= 1
return self.v
def postinc(self):
self.v += 1
return self.v - 1
def postdec(self):
self.v -= 1
return self.v + 1
def __add__(self,addend):
return self.v + addend
def __sub__(self,subtrahend):
return self.v - subtrahend
def __mul__(self,multiplier):
return self.v * multiplier
def __div__(self,divisor):
return self.v / divisor
def __getitem__(self):
return self.v
def __str__(self):
return str(self.v)
def set(self,v):
if type(v) != int:
v = 0
self.v = v
You might use it like this:
c = counter() # defaults to zero
for listItem in myList: # imaginary task
doSomething(c.postinc(),listItem) # passes c, but becomes c+1
...already having c, you could do this...
c.set(11)
while c.predec() > 0:
print c
....or just...
d = counter(11)
while d.predec() > 0:
print d
...and for (re-)assignment into integer...
c = counter(100)
d = c + 223 # assignment as integer
c = c + 223 # re-assignment as integer
print type(c),c # <type 'int'> 323
...while this will maintain c as type counter:
c = counter(100)
c.set(c + 223)
print type(c),c # <class '__main__.counter'> 323
EDIT:
And then there's this bit of unexpected (and thoroughly unwanted) behavior,
c = counter(42)
s = '%s: %d' % ('Expecting 42',c) # but getting non-numeric exception
print s
...because inside that tuple, getitem() isn't what used, instead a reference to the object is passed to the formatting function. Sigh. So:
c = counter(42)
s = '%s: %d' % ('Expecting 42',c.v) # and getting 42.
print s
...or, more verbosely, and explicitly what we actually wanted to happen, although counter-indicated in actual form by the verbosity (use c.v
instead)...
c = counter(42)
s = '%s: %d' % ('Expecting 42',c.__getitem__()) # and getting 42.
print s
Python does not have these operators, but if you really need them you can write a function having the same functionality.
def PreIncrement(name, local={}):
#Equivalent to ++name
if name in local:
local[name]+=1
return local[name]
globals()[name]+=1
return globals()[name]
def PostIncrement(name, local={}):
#Equivalent to name++
if name in local:
local[name]+=1
return local[name]-1
globals()[name]+=1
return globals()[name]-1
Usage:
x = 1
y = PreIncrement('x') #y and x are both 2
a = 1
b = PostIncrement('a') #b is 1 and a is 2
Inside a function you have to add locals() as a second argument if you want to change local variable, otherwise it will try to change global.
x = 1
def test():
x = 10
y = PreIncrement('x') #y will be 2, local x will be still 10 and global x will be changed to 2
z = PreIncrement('x', locals()) #z will be 11, local x will be 11 and global x will be unaltered
test()
Also with these functions you can do:
x = 1
print(PreIncrement('x')) #print(x+=1) is illegal!
But in my opinion following approach is much clearer:
x = 1
x+=1
print(x)
Decrement operators:
def PreDecrement(name, local={}):
#Equivalent to --name
if name in local:
local[name]-=1
return local[name]
globals()[name]-=1
return globals()[name]
def PostDecrement(name, local={}):
#Equivalent to name--
if name in local:
local[name]-=1
return local[name]+1
globals()[name]-=1
return globals()[name]+1
I used these functions in my module translating javascript to python.
Python does not have unary increment/decrement operators (--
/++
). Instead, to increment a value, use
a += 1
But be careful here. If you're coming from C, even this is different in python. Python doesn't have "variables" in the sense that C does, instead python uses names and objects, and in python int
s are immutable.
so lets say you do
a = 1
What this means in python is: create an object of type int
having value 1
and bind the name a
to it. The object is an instance of int
having value 1
, and the name a
refers to it. The name a
and the object to which it refers are distinct.
Now lets say you do
a += 1
Since int
s are immutable, what happens here is as follows:
a
refers to (it is an int
with id 0x559239eeb380
)0x559239eeb380
(it is 1
)int
object with value 2
(it has object id 0x559239eeb3a0
)a
to this new objecta
refers to object 0x559239eeb3a0
and the original object (0x559239eeb380
) is no longer refered to by the name a
. If there aren't any other names refering to the original object it will be garbage collected later.Give it a try yourself:
a = 1
print(hex(id(a)))
a += 1
print(hex(id(a)))
In python 3.8+ you can do :
(a:=a+1) #same as ++a (increment, then return new value)
(a:=a+1)-1 #same as a++ (return the incremented value -1) (useless)
You can do a lot of thinks with this.
>>> a = 0
>>> while (a:=a+1) < 5:
print(a)
1
2
3
4
Or if you want write somthing with more sophisticated syntaxe (the goal is not optimization):
>>> del a
>>> while (a := (a if 'a' in locals() else 0) + 1) < 5:
print(a)
1
2
3
4
It will return 0 even if 'a' doesn't exist without errors, and then will set it to 1