I have a time-series data as shown below.
2015-04-26 23:00:00 5704.27388916015661380
2015-04-27 00:00:00 4470.30868326822928793
2015-04-27 01:00:00 4552.
The zoo
package has several functions for dealing with NA
values. One of the following functions might suit your needs:
na.locf
: Last observation carried forward. Using the parameter fromLast = TRUE
corresponds to next observation carried backward (NOCB).na.aggregate
: Replace the NA
's with some aggregated value. The default aggregation function is the mean
, but you can specify other functions as well. See ?na.aggregate
for more info.na.approx
: NA
's are replaced with linear interpolated values.You can compare the outcomes to see what these functions do:
library(zoo)
df$V.loc <- na.locf(df$V2)
df$V.agg <- na.aggregate(df$V2)
df$V.app <- na.approx(df$V2)
this results in:
> df
V1 V2 V.loc V.agg V.app
1 2015-04-26 23:00:00 5704.27389 5704.27389 5704.27389 5704.27389
2 2015-04-27 00:00:00 4470.30868 4470.30868 4470.30868 4470.30868
3 2015-04-27 01:00:00 4552.57242 4552.57242 4552.57242 4552.57242
4 2015-04-27 02:00:00 4570.22250 4570.22250 4570.22250 4570.22250
5 2015-04-27 03:00:00 NA 4570.22250 5454.64894 6602.01119
6 2015-04-27 04:00:00 NA 4570.22250 5454.64894 8633.79987
7 2015-04-27 05:00:00 NA 4570.22250 5454.64894 10665.58856
8 2015-04-27 06:00:00 12697.37724 12697.37724 12697.37724 12697.37724
9 2015-04-27 07:00:00 5538.71119 5538.71119 5538.71119 5538.71119
10 2015-04-27 08:00:00 81.95061 81.95061 81.95061 81.95061
11 2015-04-27 09:00:00 8550.65817 8550.65817 8550.65817 8550.65817
12 2015-04-27 10:00:00 2925.76573 2925.76573 2925.76573 2925.76573
Used data:
df <- structure(list(V1 = structure(c(1430082000, 1430085600, 1430089200, 1430092800, 1430096400, 1430100000, 1430103600, 1430107200, 1430110800, 1430114400, 1430118000, 1430121600), class = c("POSIXct", "POSIXt"), tzone = ""), V2 = c(5704.27388916016, 4470.30868326823, 4552.57241617839, 4570.22250032826, NA, NA, NA, 12697.3772408622, 5538.71119009654, 81.950606473287, 8550.65816895301, 2925.76573206584)), .Names = c("V1", "V2"), row.names = c(NA, -12L), class = "data.frame")
Addition:
There are also additional time series functions for dealing with NAs in the imputeTS
and the forecast
package (also some more advanced functions).
For example:
library("imputeTS")
# Moving Average Imputation
na.ma(df$V2)
# Imputation via Kalman Smoothing on structural time series models
na.kalman(df$V2)
# Just interpolation but with some nice options (linear, spline,stine)
na.interpolation(df$V2)
or
library("forecast")
#Interpolation via seasonal decomposition and interpolation
na.interp(df$V2)