I\'d like to find a particular pattern in a pandas dataframe column, and return the corresponding index values in order to subset the dataframe.
Here\'s a sample dat
The shortest way is finding the index at which the pattern starts. Then you just need to select the three following rows.
In order to find these indexes, a one-liner is enough:
indexes=df[(df.ColA==pattern[0])&(df["ColA"].shift(-1)==pattern[1])&(df["ColA"].shift(-2)==pattern[2])].index
Then do as the other answer says to get the subsets that you want.
for col in df:
index = df[col][(df[col] == pattern[0]) & (df[col].shift(-1) == pattern[1]) & (df[col].shift(-2) == pattern[2])].index
if not index.empty: print(index)
Here is a solution:
Check if the pattern was found in any of the columns using rolling. This will give you the last index of the group matching the pattern
matched = df.rolling(len(pattern)).apply(lambda x: all(np.equal(x, pattern)))
matched = matched.sum(axis = 1).astype(bool) #Sum to perform boolean OR
matched
Out[129]:
Dates
2017-07-07 False
2017-07-08 False
2017-07-09 False
2017-07-10 False
2017-07-11 False
2017-07-12 True
2017-07-13 False
2017-07-14 False
2017-07-15 False
2017-07-16 False
dtype: bool
For each match, add the indexes of the complete pattern:
idx_matched = np.where(matched)[0]
subset = [range(match-len(pattern)+1, match+1) for match in idx_matched]
Get all the patterns:
result = pd.concat([df.iloc[subs,:] for subs in subset], axis = 0)
result
Out[128]:
ColA ColB
Dates
2017-07-10 100 91
2017-07-11 90 107
2017-07-12 105 99
Using the magic of list comprehensions:
[df.index[i - len(pattern)] # Get the datetime index
for i in range(len(pattern), len(df)) # For each 3 consequent elements
if all(df['ColA'][i-len(pattern):i] == pattern)] # If the pattern matched
# [Timestamp('2017-07-10 00:00:00')]