Using Spark 1.5.1,
I\'ve been trying to forward fill null values with the last known observation for one column of my DataFrame.
// Forward filling
w1 = Window.partitionBy('cookie_id').orderBy('c_date').rowsBetween(Window.unboundedPreceding,0)
w2 = w1.rowsBetween(Window.unboundedPreceding, Window.unboundedFollowing)
//Backward filling
final_df = df.withColumn('UserIDFilled', F.coalesce(F.last('user_id', True).over(w1),
F.first('user_id',True).over(w2)))
final_df.orderBy('cookie_id', 'c_date').show(truncate=False)
+---------+----------+-------+------------+
|cookie_id|c_date |user_id|UserIDFilled|
+---------+----------+-------+------------+
|1 |2015-12-01|null |U1 |
|1 |2015-12-02|U1 |U1 |
|1 |2015-12-02|U1 |U1 |
|1 |2015-12-03|U2 |U2 |
|1 |2015-12-04|null |U2 |
|1 |2015-12-05|null |U2 |
|2 |2015-12-02|U3 |U3 |
|2 |2015-12-03|null |U3 |
|2 |2015-12-04|null |U3 |
|2 |2015-12-05|null |U3 |
+---------+----------+-------+------------+
Cloudera has released a library called spark-ts that offers a suite of useful methods for processing time series and sequential data in Spark. This library supports a number of time-windowed methods for imputing data points based on other data in the sequence.
http://blog.cloudera.com/blog/2015/12/spark-ts-a-new-library-for-analyzing-time-series-data-with-apache-spark/
Another workaround to get this working, is to try something like this:
from pyspark.sql import functions as F
from pyspark.sql.window import Window
window = Window.partitionBy('cookie_id')\
.orderBy('Time')\
.rowsBetween(-1000000, 0)
final = joined.\
withColumn('UserIDFilled', F.last('User_ID',ignorenulls = True).over(window)
So what this is doing is that it constructs your window based on the partition key and the order column. It also tells the window to look back for 1000000 rows and up to the current row. Finally, at each row, you return the last value that is not null (which remember, according to your window, it includes your current row)
Hope you find this forward fill function useful. It is written using native pyspark function. Neither udf nor rdd being used (both of them are very slow, especially UDF!).
Let's use example provided by @Sid.
values = [
(1, "2015-12-01", None),
(1, "2015-12-02", "U1"),
(1, "2015-12-02", "U1"),
(1, "2015-12-03", "U2"),
(1, "2015-12-04", None),
(1, "2015-12-05", None),
(2, "2015-12-04", None),
(2, "2015-12-03", None),
(2, "2015-12-02", "U3"),
(2, "2015-12-05", None),
]
df = spark.createDataFrame(values, ['cookie_ID', 'Time', 'User_ID'])
Functions:
def cum_sum(df, sum_col , order_col, cum_sum_col_nm='cum_sum'):
'''Find cumulative sum of a column.
Parameters
-----------
sum_col : String
Column to perform cumulative sum.
order_col : List
Column/columns to sort for cumulative sum.
cum_sum_col_nm : String
The name of the resulting cum_sum column.
Return
-------
df : DataFrame
Dataframe with additional "cum_sum_col_nm".
'''
df = df.withColumn('tmp', lit('tmp'))
windowval = (Window.partitionBy('tmp')
.orderBy(order_col)
.rangeBetween(Window.unboundedPreceding, 0))
df = df.withColumn('cum_sum', sum(sum_col).over(windowval).alias('cumsum').cast(StringType()))
df = df.drop('tmp')
return df
def forward_fill(df, order_col, fill_col, fill_col_name=None):
'''Forward fill a column by a column/set of columns (order_col).
Parameters:
------------
df: Dataframe
order_col: String or List of string
fill_col: String (Only work for a column for this version.)
Return:
---------
df: Dataframe
Return df with the filled_cols.
'''
# "value" and "constant" are tmp columns created ton enable forward fill.
df = df.withColumn('value', when(col(fill_col).isNull(), 0).otherwise(1))
df = cum_sum(df, 'value', order_col).drop('value')
df = df.withColumn(fill_col,
when(col(fill_col).isNull(), 'constant').otherwise(col(fill_col)))
win = (Window.partitionBy('cum_sum')
.orderBy(order_col))
if not fill_col_name:
fill_col_name = 'ffill_{}'.format(fill_col)
df = df.withColumn(fill_col_name, collect_list(fill_col).over(win)[0])
df = df.drop('cum_sum')
df = df.withColumn(fill_col_name, when(col(fill_col_name)=='constant', None).otherwise(col(fill_col_name)))
df = df.withColumn(fill_col, when(col(fill_col)=='constant', None).otherwise(col(fill_col)))
return df
Let's see the results.
ffilled_df = forward_fill(df,
order_col=['cookie_ID', 'Time'],
fill_col='User_ID',
fill_col_name = 'User_ID_ffil')
ffilled_df.sort(['cookie_ID', 'Time']).show()
The partitioned example code from Spark / Scala: forward fill with last observation in pyspark is shown. This only works for data that can be partitioned.
Load the data
values = [
(1, "2015-12-01", None),
(1, "2015-12-02", "U1"),
(1, "2015-12-02", "U1"),
(1, "2015-12-03", "U2"),
(1, "2015-12-04", None),
(1, "2015-12-05", None),
(2, "2015-12-04", None),
(2, "2015-12-03", None),
(2, "2015-12-02", "U3"),
(2, "2015-12-05", None),
]
rdd = sc.parallelize(values)
df = rdd.toDF(["cookie_id", "c_date", "user_id"])
df = df.withColumn("c_date", df.c_date.cast("date"))
df.show()
The DataFrame is
+---------+----------+-------+
|cookie_id| c_date|user_id|
+---------+----------+-------+
| 1|2015-12-01| null|
| 1|2015-12-02| U1|
| 1|2015-12-02| U1|
| 1|2015-12-03| U2|
| 1|2015-12-04| null|
| 1|2015-12-05| null|
| 2|2015-12-04| null|
| 2|2015-12-03| null|
| 2|2015-12-02| U3|
| 2|2015-12-05| null|
+---------+----------+-------+
Column used to sort the partitions
# get the sort key
def getKey(item):
return item.c_date
The fill function. Can be used to fill in multiple columns if necessary.
# fill function
def fill(x):
out = []
last_val = None
for v in x:
if v["user_id"] is None:
data = [v["cookie_id"], v["c_date"], last_val]
else:
data = [v["cookie_id"], v["c_date"], v["user_id"]]
last_val = v["user_id"]
out.append(data)
return out
Convert to rdd, partition, sort and fill the missing values
# Partition the data
rdd = df.rdd.groupBy(lambda x: x.cookie_id).mapValues(list)
# Sort the data by date
rdd = rdd.mapValues(lambda x: sorted(x, key=getKey))
# fill missing value and flatten
rdd = rdd.mapValues(fill).flatMapValues(lambda x: x)
# discard the key
rdd = rdd.map(lambda v: v[1])
Convert back to DataFrame
df_out = sqlContext.createDataFrame(rdd)
df_out.show()
The output is
+---+----------+----+
| _1| _2| _3|
+---+----------+----+
| 1|2015-12-01|null|
| 1|2015-12-02| U1|
| 1|2015-12-02| U1|
| 1|2015-12-03| U2|
| 1|2015-12-04| U2|
| 1|2015-12-05| U2|
| 2|2015-12-02| U3|
| 2|2015-12-03| U3|
| 2|2015-12-04| U3|
| 2|2015-12-05| U3|
+---+----------+----+