I\'m using tensorflow 0.10 and I was benchmarking the examples found in the official HowTo on reading data. This HowTo illustrates different methods to move data to tensorf
Update Oct 9 the slowness comes because the computation runs too fast for Python to pre-empt the computation thread and to schedule the pre-fetching threads. Computation in main thread takes 2ms and apparently that's too little for the pre-fetching thread to grab the GIL. Pre-fetching thread has larger delay and hence can always be pre-empted by computation thread. So the computation thread runs through all of the examples, and then spends most of the time blocked on GIL as some prefetching thread gets scheduled and enqueues a single example. The solution is to increase number of Python threads, increase queue size to fit the entire dataset, start queue runners, and then pause main thread for a couple of seconds to give queue runners to pre-populate the queue.
Old stuff
That's surprisingly slow.
This looks some kind of special cases making the last 3 examples unnecessarily slow (most effort went into optimizing large models like ImageNet, so MNIST didn't get as much attention).
You can diagnose the problems by getting timelines, as described here
Here are 3 of those examples with timeline collection enabled.
Here's the timeline for feed_dict
implementation
The important thing to notice is that matmul takes a good chunk of the time, so the reading overhead is not significant
Now here's the timeline for reader
implementation
You can see that operation is bottlenecked on QueueDequeueMany which takes whopping 45ms.
If you zoom in, you'll see a bunch of tiny MEMCPY and Cast operations, which is a sign of some op being CPU only (parse_single_example
), and the dequeue having to schedule multiple independent CPU->GPU transfers
For the var
example below with GPU disabled, I don't see tiny little ops, but QueueDequeueMany still takes over 10ms. The timing seems to scale linearly with batch size, so there's some fundamental slowness there. Filed #4740
Yaroslav nails the problem well. With small models you'll need to speed up the data import. One way to do this is with the Tensorflow function, tf.TFRecordReader.read_up_to, that reads multiple records in each session.run()
call, thereby removing the excess overhead caused by multiple calls.
enqueue_many_size = SOME_ENQUEUE_MANY_SIZE
reader = tf.TFRecordReader(options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.ZLIB))
_, queue_batch = reader.read_up_to(filename_queue, enqueue_many_size)
batch_serialized_example = tf.train.shuffle_batch(
[queue_batch],
batch_size=batch_size,
num_threads=thread_number,
capacity=capacity,
min_after_dequeue=min_after_dequeue,
enqueue_many=True)
This was also addressed in this SO question.
The main question is that why the example with the preloaded data (constant) examples/how_tos/reading_data/fully_connected_preloaded.py is significantly slower than other data loading example codes when using GPU.
I had the same problem, that fully_connected_preloaded.py
is unexpectedly slow on my Titan X. The problem was that the whole dataset was pre-loaded on CPU, not GPU.
First, let me share my initial attempts. I applied the following performance tips by Yaroslav.
capacity=55000
for tf.train.slice_input_producer
.(55000 is the size of MNIST training set in my case) num_threads=5
for tf.train.batch
.capacity=500
for tf.train.batch
.time.sleep(10)
after tf.train.start_queue_runners
.However, the average speed per each batch stays the same. I tried timeline
visualization for profiling, and still got QueueDequeueManyV2
dominating.
The problem was the line 65 of fully_connected_preloaded.py
. The following code loads entire dataset to CPU, still providing a bottleneck for CPU-GPU data transmission.
with tf.device('/cpu:0'):
input_images = tf.constant(data_sets.train.images)
input_labels = tf.constant(data_sets.train.labels)
Hence, I switched the device allocation.
with tf.device('/gpu:0')
Then I got x100 speed-up per each batch.
Note:
fully_connected_preloaded.py
), the comment in the line 64 says "rest of pipeline is CPU-only". I am not sure about what this comment intended.