Let\'s imagine this datetime
>>> import datetime
>>> dt = datetime.datetime(2012, 10, 25, 17, 32, 16)
I\'d l
@Mark Dickinson suggested the best formula so far:
def ceil_dt(dt, delta):
return dt + (datetime.min - dt) % delta
In Python 3, for an arbitrary time delta (not just 15 minutes):
#!/usr/bin/env python3
import math
from datetime import datetime, timedelta
def ceil_dt(dt, delta):
return datetime.min + math.ceil((dt - datetime.min) / delta) * delta
print(ceil_dt(datetime(2012, 10, 25, 17, 32, 16), timedelta(minutes=15)))
# -> 2012-10-25 17:45:00
To avoid intermediate floats, divmod()
could be used:
def ceil_dt(dt, delta):
q, r = divmod(dt - datetime.min, delta)
return (datetime.min + (q + 1)*delta) if r else dt
Example:
>>> ceil_dt(datetime(2012, 10, 25, 17, 32, 16), timedelta(minutes=15))
datetime.datetime(2012, 10, 25, 17, 45)
>>> ceil_dt(datetime.min, datetime.resolution)
datetime.datetime(1, 1, 1, 0, 0)
>>> ceil_dt(datetime.min, 2*datetime.resolution)
datetime.datetime(1, 1, 1, 0, 0)
>>> ceil_dt(datetime.max, datetime.resolution)
datetime.datetime(9999, 12, 31, 23, 59, 59, 999999)
>>> ceil_dt(datetime.max, 2*datetime.resolution)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in ceil_dt
OverflowError: date value out of range
>>> ceil_dt(datetime.min+datetime.resolution, datetime.resolution)
datetime.datetime(1, 1, 1, 0, 0, 0, 1)
>>> ceil_dt(datetime.min+datetime.resolution, 2*datetime.resolution)
datetime.datetime(1, 1, 1, 0, 0, 0, 2)
>>> ceil_dt(datetime.max-datetime.resolution, datetime.resolution)
datetime.datetime(9999, 12, 31, 23, 59, 59, 999998)
>>> ceil_dt(datetime.max-datetime.resolution, 2*datetime.resolution)
datetime.datetime(9999, 12, 31, 23, 59, 59, 999998)
>>> ceil_dt(datetime.max-2*datetime.resolution, datetime.resolution)
datetime.datetime(9999, 12, 31, 23, 59, 59, 999997)
>>> ceil_dt(datetime.max-2*datetime.resolution, 2*datetime.resolution)
datetime.datetime(9999, 12, 31, 23, 59, 59, 999998)
>>> ceil_dt(datetime.max-timedelta(1), datetime.resolution)
datetime.datetime(9999, 12, 30, 23, 59, 59, 999999)
>>> ceil_dt(datetime.max-timedelta(1), 2*datetime.resolution)
datetime.datetime(9999, 12, 31, 0, 0)
>>> ceil_dt(datetime.min, datetime.max-datetime.min)
datetime.datetime(1, 1, 1, 0, 0)
>>> ceil_dt(datetime.max, datetime.max-datetime.min)
datetime.datetime(9999, 12, 31, 23, 59, 59, 999999)
def ceil(dt):
if dt.minute % 15 or dt.second:
return dt + datetime.timedelta(minutes = 15 - dt.minute % 15,
seconds = -(dt.second % 60))
else:
return dt
This gives you:
>>> ceil(datetime.datetime(2012,10,25, 17,45))
datetime.datetime(2012, 10, 25, 17, 45)
>>> ceil(datetime.datetime(2012,10,25, 17,45,1))
datetime.datetime(2012, 10, 25, 18, 0)
>>> ceil(datetime.datetime(2012,12,31,23,59,0))
datetime.datetime(2013,1,1,0,0)
This one takes microseconds into account!
import math
def ceil_dt(dt):
# how many secs have passed this hour
nsecs = dt.minute*60 + dt.second + dt.microsecond*1e-6
# number of seconds to next quarter hour mark
# Non-analytic (brute force is fun) way:
# delta = next(x for x in xrange(0,3601,900) if x>=nsecs) - nsecs
# analytic way:
delta = math.ceil(nsecs / 900) * 900 - nsecs
#time + number of seconds to quarter hour mark.
return dt + datetime.timedelta(seconds=delta)
t1 = datetime.datetime(2017, 3, 6, 7, 0)
assert ceil_dt(t1) == t1
t2 = datetime.datetime(2017, 3, 6, 7, 1)
assert ceil_dt(t2) == datetime.datetime(2017, 3, 6, 7, 15)
t3 = datetime.datetime(2017, 3, 6, 7, 15)
assert ceil_dt(t3) == t3
t4 = datetime.datetime(2017, 3, 6, 7, 16)
assert ceil_dt(t4) == datetime.datetime(2017, 3, 6, 7, 30)
t5 = datetime.datetime(2017, 3, 6, 7, 30)
assert ceil_dt(t5) == t5
t6 = datetime.datetime(2017, 3, 6, 7, 31)
assert ceil_dt(t6) == datetime.datetime(2017, 3, 6, 7, 45)
t7 = datetime.datetime(2017, 3, 6, 7, 45)
assert ceil_dt(t7) == t7
t8 = datetime.datetime(2017, 3, 6, 7, 46)
assert ceil_dt(t8) == datetime.datetime(2017, 3, 6, 8, 0)
Explanation of delta
:
nsecs / 900
is the number of quarter hour chunks that have transpired. Taking the ceil
of this rounds up the number of quarter hour chunks.Here is my code working with any periods:
def floorDT(dt, secperiod):
tstmp = dt.timestamp()
return datetime.datetime.fromtimestamp(
math.floor(tstmp/secperiod)*secperiod).astimezone().astimezone(datetime.timezone.utc)
def ceilDT(dt, secperiod):
tstmp = dt.timestamp()
return datetime.datetime.fromtimestamp(
math.ceil(tstmp/secperiod)*secperiod).astimezone().astimezone(datetime.timezone.utc)
Note: we must use astimezone().astimezone() trick else it uses local timezone during converting from timestamp
The formula proposed here by @Mark Dickinson worked beautifully, but I needed a solution that also handled timezones and Daylight Savings Time (DST).
Using pytz
, I arrived at:
import pytz
from datetime import datetime, timedelta
def datetime_ceiling(dt, delta):
# Preserve original timezone info
original_tz = dt.tzinfo
if original_tz:
# If the original was timezone aware, translate to UTC.
# This is necessary because datetime math does not take
# DST into account, so first we normalize the datetime...
dt = dt.astimezone(pytz.UTC)
# ... and then make it timezone naive
dt = dt.replace(tzinfo=None)
# We only do math on a timezone naive object, which allows
# us to pass naive objects directly to the function
dt = dt + ((datetime.min - dt) % delta)
if original_tz:
# If the original was tz aware, we make the result aware...
dt = pytz.UTC.localize(dt)
# ... then translate it from UTC back its original tz.
# This translation applies appropriate DST status.
dt = dt.astimezone(original_tz)
return dt
A nearly identical floor
function can be made by changing one line of code:
def datetime_floor(dt, delta):
...
dt = dt - ((datetime.min - dt) % delta)
...
The following datetime is three minutes before the transition from DST back to Standard Time (STD):
datetime.datetime(2020, 11, 1, 1, 57, tzinfo=<DstTzInfo 'US/Eastern' EDT-1 day, 20:00:00 DST>)
Assuming the above as dt
, we can round down to the nearest five minute increment using our floor function:
>>> datetime_floor(dt, timedelta(minutes=5))
datetime.datetime(2020, 11, 1, 1, 55, tzinfo=<DstTzInfo 'US/Eastern' EDT-1 day, 20:00:00 DST>)
The timezone and relationship to DST is preserved. (The same would be true for the ceiling function.)
On this date DST will end at 2 am, at which point the time will "roll back" to 1am STD. If we use our ceiling function to round up from 1:57am DST, we should not end up at 2am DST, but rather at 1:00am STD, which is the result we get:
>>> datetime_ceiling(dt, timedelta(minutes=5))
datetime.datetime(2020, 11, 1, 1, 0, tzinfo=<DstTzInfo 'US/Eastern' EST-1 day, 19:00:00 STD>)
You just need to calculate correct minutes and add them in datetime object after setting minutes, seconds to zero
import datetime
def quarter_datetime(dt):
minute = (dt.minute//15+1)*15
return dt.replace(minute=0, second=0)+datetime.timedelta(minutes=minute)
for minute in [12, 22, 35, 52]:
print quarter_datetime(datetime.datetime(2012, 10, 25, 17, minute, 16))
It works for all cases:
2012-10-25 17:15:00
2012-10-25 17:30:00
2012-10-25 17:45:00
2012-10-25 18:00:00