Here is my question.
With bunch of .csv files(or other files). Pandas is an easy way to read them and save into Dataframe
format. But when the amount of f
Using Pool
:
import os
import pandas as pd
from multiprocessing import Pool
# wrap your csv importer in a function that can be mapped
def read_csv(filename):
'converts a filename to a pandas dataframe'
return pd.read_csv(filename)
def main():
# get a list of file names
files = os.listdir('.')
file_list = [filename for filename in files if filename.split('.')[1]=='csv']
# set up your pool
with Pool(processes=8) as pool: # or whatever your hardware can support
# have your pool map the file names to dataframes
df_list = pool.map(read_csv, file_list)
# reduce the list of dataframes to a single dataframe
combined_df = pd.concat(df_list, ignore_index=True)
if __name__ == '__main__':
main()
I am not getting map/map_async to work, but managed to work with apply_async.
Two possible ways (I have no idea which one is better):
I find glob easy to list and fitler files from a directory
from glob import glob
import pandas as pd
from multiprocessing import Pool
folder = "./task_1/" # note the "/" at the end
file_list = glob(folder+'*.xlsx')
def my_read(filename):
f = pd.read_csv(filename)
return (f.VALUE.as_matrix()).reshape(75,90)
#DF_LIST = [] # A) end
DF = pd.DataFrame() # B) during
def DF_LIST_append(result):
#DF_LIST.append(result) # A) end
global DF # B) during
DF = pd.concat([DF,result], ignore_index=True) # B) during
pool = Pool(processes=8)
for file in file_list:
pool.apply_async(my_read, args = (file,), callback = DF_LIST_append)
pool.close()
pool.join()
#DF = pd.concat(DF_LIST, ignore_index=True) # A) end
print(DF.shape)
If you aren't against using another library, you could use Graphlab's sframe. This creates an object similar to data frames which is very fast to read data if performance is a big issue.
dask library is designed to address not only but certainly your issue.