I\'m trying to use matplotlib
to read in an RGB image and convert it to grayscale.
In matlab I use this:
img = rgb2gray(imread(\'image.p
Using this formula
Y' = 0.299 R + 0.587 G + 0.114 B
We can do
import imageio
import numpy as np
import matplotlib.pyplot as plt
pic = imageio.imread('(image)')
gray = lambda rgb : np.dot(rgb[... , :3] , [0.299 , 0.587, 0.114])
gray = gray(pic)
plt.imshow(gray, cmap = plt.get_cmap(name = 'gray'))
However, the GIMP converting color to grayscale image software has three algorithms to do the task.
If you're using NumPy/SciPy already you may as well use:
scipy.ndimage.imread(file_name, mode='L')
You can also use scikit-image, which provides some functions to convert an image in ndarray
, like rgb2gray
.
from skimage import color
from skimage import io
img = color.rgb2gray(io.imread('image.png'))
Notes: The weights used in this conversion are calibrated for contemporary CRT phosphors: Y = 0.2125 R + 0.7154 G + 0.0721 B
Alternatively, you can read image in grayscale by:
from skimage import io
img = io.imread('image.png', as_gray=True)
The tutorial is cheating because it is starting with a greyscale image encoded in RGB, so they are just slicing a single color channel and treating it as greyscale. The basic steps you need to do are to transform from the RGB colorspace to a colorspace that encodes with something approximating the luma/chroma model, such as YUV/YIQ or HSL/HSV, then slice off the luma-like channel and use that as your greyscale image. matplotlib
does not appear to provide a mechanism to convert to YUV/YIQ, but it does let you convert to HSV.
Try using matplotlib.colors.rgb_to_hsv(img)
then slicing the last value (V) from the array for your grayscale. It's not quite the same as a luma value, but it means you can do it all in matplotlib
.
Background:
Alternatively, you could use PIL or the builtin colorsys.rgb_to_yiq()
to convert to a colorspace with a true luma value. You could also go all in and roll your own luma-only converter, though that's probably overkill.
How about doing it with Pillow:
from PIL import Image
img = Image.open('image.png').convert('LA')
img.save('greyscale.png')
Using matplotlib and the formula
Y' = 0.2989 R + 0.5870 G + 0.1140 B
you could do:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140])
img = mpimg.imread('image.png')
gray = rgb2gray(img)
plt.imshow(gray, cmap=plt.get_cmap('gray'), vmin=0, vmax=1)
plt.show()
Three of the suggested methods were tested for speed with 1000 RGBA PNG images (224 x 256 pixels) running with Python 3.5 on Ubuntu 16.04 LTS (Xeon E5 2670 with SSD).
Average run times
pil :
1.037 seconds
scipy:
1.040 seconds
sk :
2.120 seconds
PIL and SciPy gave identical numpy
arrays (ranging from 0 to 255). SkImage gives arrays from 0 to 1. In addition the colors are converted slightly different, see the example from the CUB-200 dataset.
SkImage:
PIL :
SciPy :
Original:
Diff :
Code
Performance
run_times = dict(sk=list(), pil=list(), scipy=list())
for t in range(100):
start_time = time.time()
for i in range(1000):
z = random.choice(filenames_png)
img = skimage.color.rgb2gray(skimage.io.imread(z))
run_times['sk'].append(time.time() - start_time)
start_time = time.time()
for i in range(1000):
z = random.choice(filenames_png)
img = np.array(Image.open(z).convert('L'))
run_times['pil'].append(time.time() - start_time)
start_time = time.time()
for i in range(1000):
z = random.choice(filenames_png)
img = scipy.ndimage.imread(z, mode='L')
run_times['scipy'].append(time.time() - start_time)
for k, v in run_times.items():
print('{:5}: {:0.3f} seconds'.format(k, sum(v) / len(v)))
z = 'Cardinal_0007_3025810472.jpg'
img1 = skimage.color.rgb2gray(skimage.io.imread(z)) * 255
IPython.display.display(PIL.Image.fromarray(img1).convert('RGB'))
img2 = np.array(Image.open(z).convert('L'))
IPython.display.display(PIL.Image.fromarray(img2))
img3 = scipy.ndimage.imread(z, mode='L')
IPython.display.display(PIL.Image.fromarray(img3))
img_diff = np.ndarray(shape=img1.shape, dtype='float32')
img_diff.fill(128)
img_diff += (img1 - img3)
img_diff -= img_diff.min()
img_diff *= (255/img_diff.max())
IPython.display.display(PIL.Image.fromarray(img_diff).convert('RGB'))
import skimage.color
import skimage.io
import random
import time
from PIL import Image
import numpy as np
import scipy.ndimage
import IPython.display
skimage.version
0.13.0
scipy.version
0.19.1
np.version
1.13.1