I have the following code to do this, but how can I do it better? Right now I think it\'s better than nested loops, but it starts to get Perl-one-linerish when you have a ge
import datetime
def daterange(start, stop, step_days=1):
current = start
step = datetime.timedelta(step_days)
if step_days > 0:
while current < stop:
yield current
current += step
elif step_days < 0:
while current > stop:
yield current
current += step
else:
raise ValueError("daterange() step_days argument must not be zero")
if __name__ == "__main__":
from pprint import pprint as pp
lo = datetime.date(2008, 12, 27)
hi = datetime.date(2009, 1, 5)
pp(list(daterange(lo, hi)))
pp(list(daterange(hi, lo, -1)))
pp(list(daterange(lo, hi, 7)))
pp(list(daterange(hi, lo, -7)))
assert not list(daterange(lo, hi, -1))
assert not list(daterange(hi, lo))
assert not list(daterange(lo, hi, -7))
assert not list(daterange(hi, lo, 7))
Pandas is great for time series in general, and has direct support for date ranges.
import pandas as pd
daterange = pd.date_range(start_date, end_date)
You can then loop over the daterange to print the date:
for single_date in daterange:
print (single_date.strftime("%Y-%m-%d"))
It also has lots of options to make life easier. For example if you only wanted weekdays, you would just swap in bdate_range. See http://pandas.pydata.org/pandas-docs/stable/timeseries.html#generating-ranges-of-timestamps
The power of Pandas is really its dataframes, which support vectorized operations (much like numpy) that make operations across large quantities of data very fast and easy.
EDIT: You could also completely skip the for loop and just print it directly, which is easier and more efficient:
print(daterange)
for i in range(16):
print datetime.date.today() + datetime.timedelta(days=i)
import datetime
def daterange(start, stop, step=datetime.timedelta(days=1), inclusive=False):
# inclusive=False to behave like range by default
if step.days > 0:
while start < stop:
yield start
start = start + step
# not +=! don't modify object passed in if it's mutable
# since this function is not restricted to
# only types from datetime module
elif step.days < 0:
while start > stop:
yield start
start = start + step
if inclusive and start == stop:
yield start
# ...
for date in daterange(start_date, end_date, inclusive=True):
print strftime("%Y-%m-%d", date.timetuple())
This function does more than you strictly require, by supporting negative step, etc. As long as you factor out your range logic, then you don't need the separate day_count
and most importantly the code becomes easier to read as you call the function from multiple places.
Use the dateutil library:
from datetime import date
from dateutil.rrule import rrule, DAILY
a = date(2009, 5, 30)
b = date(2009, 6, 9)
for dt in rrule(DAILY, dtstart=a, until=b):
print dt.strftime("%Y-%m-%d")
This python library has many more advanced features, some very useful, like relative delta
s—and is implemented as a single file (module) that's easily included into a project.
This function has some extra features:
error checking in case the end is older than the start
import datetime
from datetime import timedelta
DATE_FORMAT = '%Y/%m/%d'
def daterange(start, end):
def convert(date):
try:
date = datetime.datetime.strptime(date, DATE_FORMAT)
return date.date()
except TypeError:
return date
def get_date(n):
return datetime.datetime.strftime(convert(start) + timedelta(days=n), DATE_FORMAT)
days = (convert(end) - convert(start)).days
if days <= 0:
raise ValueError('The start date must be before the end date.')
for n in range(0, days):
yield get_date(n)
start = '2014/12/1'
end = '2014/12/31'
print list(daterange(start, end))
start_ = datetime.date.today()
end = '2015/12/1'
print list(daterange(start, end))