Most general higher-order constraint describing a sequence of integers ordered with respect to a relation

后端 未结 3 1449
时光取名叫无心
时光取名叫无心 2020-11-22 04:16

In CLP(FD), we frequently need to state: \"This is a list of integers and finite domain variables in (sometimes: strictly) ascending/descending order.\"

Is

相关标签:
3条回答
  • 2020-11-22 04:46

    Hoogle was not very useful, but Hayoo is!

    foldcmpl

    so this is a special form of fold for a list, but it does not apply length list times but one time less.

    isSortedBy

    is not entirely general in its name, but in its signature. Maybe insisting on the most general name is not that helpful. Otherwise we just have entities all over?

    The definition reads:

    The isSortedBy function returns True iff the predicate returns true for all adjacent pairs of elements in the list.

    Maybe: all_adjacent_pairs(R_2, Xs). which sounds a bit after having a looping construct that has adjacent_pair as some modifier.

    0 讨论(0)
  • 2020-11-22 04:53

    This is inspired by a toolbox of functional higher-order idioms I once implemented. Back then I found the corner cases agonizing, I still do today:) Also, finding good names is always an issue...

    Consider meta-predicate mapadj/4:

    mapadj(Relation_4,As,Bs,Cs) :-
       list_list_list_mapadj(As,Bs,Cs,Relation_4).
    
    list_list_list_mapadj([],[],[],_).
    list_list_list_mapadj([A|As],Bs,Cs,Relation_4) :-
       list_prev_list_list_mapadj(As,A,Bs,Cs,Relation_4).
    
    list_prev_list_list_mapadj([],_,[],[],_).
    list_prev_list_list_mapadj([A1|As],A0,[B|Bs],[C|Cs],Relation_4) :-
       call(Relation_4,A0,A1,B,C),
       list_prev_list_list_mapadj(As,A1,Bs,Cs,Relation_4).
    

    Sample uses:

    z_z_sum_product(X,Y,Sum,Product) :-
       Sum     #= X + Y,
       Product #= X * Y.
    
    :- mapadj(z_z_sum_product,[],       [],     []).
    :- mapadj(z_z_sum_product,[1],      [],     []).
    
    :- mapadj(z_z_sum_product,[1,2],    [3],    [2]).
    :- mapadj(z_z_sum_product,[1,2,3],  [3,5],  [2,6]).
    :- mapadj(z_z_sum_product,[1,2,3,4],[3,5,7],[2,6,12]).
    

    I'm aware of the rift in the corner cases As = []and As = [_], still I feel this is as close to "for all adjacent list items" as it gets.

    Also, all of this can easily be extended:

    • down to mapadj/2 (akin to chain/2, except for the type-check with singleton lists)
    • sideways, with an additional state argument, to foldadjl/n, scanadjl/n

    Regarding names: IMO the l / r suffix is required with fold / scan, but not with map.


    Edit 2015-04-26

    Here comes the before-mentioned foldadjl/4:

    foldadjl(Relation_4,Xs) -->
       list_foldadjl(Xs,Relation_4).
    
    list_foldadjl([],_) -->
       [].
    list_foldadjl([X|Xs],Relation_4) -->
       list_prev_foldadjl(Xs,X,Relation_4).
    
    list_prev_foldadjl([],_,_) -->
       [].
    list_prev_foldadjl([X1|Xs],X0,Relation_4) -->
       call(Relation_4,X0,X1),
       list_prev_foldadjl(Xs,X1,Relation_4).
    

    Edit 2015-04-27

    Here comes meta-predicate splitlistIfAdj/3, based on if_/3 which was proposed in a previous answer on reification.

    split_if_adj(P_3,As,Bss) :- splitlistIfAdj(P_3,As,Bss).
    
    splitlistIfAdj(P_3,As,Bss) :- 
       list_split_(As,Bss,P_3).
    
    list_split_([],[],_).
    list_split_([X0|Xs],     [Cs|Bss],P_3) :-
       list_prev_split_(Xs,X0,Cs,Bss, P_3).
    
    list_prev_split_([],     X, [X],[],_).
    list_prev_split_([X1|Xs],X0,[X0|Cs],Bss,P_3) :-
       if_(call(P_3,X0,X1), 
           (Cs = [],  Bss = [Cs0|Bss0]),
           (Cs = Cs0, Bss = Bss0)),
       list_prev_split_(Xs,X1,Cs0,Bss0,P_3).
    

    To show it in use let's define dif/3 exactly the same way as (=)/3 but with flipped truth-value:

    dif(X, Y, R) :- X == Y,    !, R = false.
    dif(X, Y, R) :- ?=(X, Y),  !, R = true. % syntactically different
    dif(X, Y, R) :- X \= Y,    !, R = true. % semantically different
    dif(X, Y, R) :- R == false, !, X = Y.
    dif(X, X, false).
    dif(X, Y, true) :-
       dif(X, Y).
    

    Now we use them in tandem:

    ?- splitlistIfAdj(dif,[1,2,2,3,3,3,4,4,4,4],Pss).
    Pss = [[1],[2,2],[3,3,3],[4,4,4,4]].      % succeeds deterministically
    

    What if we generalize some list items? Do we get multiple answers with the right pending goals?

    First, a small example:

    ?- splitlistIfAdj(dif,[1,X,2],Pss).
    X = 1,             Pss = [[1,1],[2]]  ;
    X = 2,             Pss = [[1],[2,2]]  ;
    dif(X,1),dif(X,2), Pss = [[1],[X],[2]].
    

    A somewhat bigger example involving the two variables X and Y.

    ?- splitlistIfAdj(dif,[1,2,2,X,3,3,Y,4,4,4],Pss).
    X = 2,             Y = 3,             Pss = [[1],[2,2,2],[3,3,3],[4,4,4]]    ;
    X = 2,             Y = 4,             Pss = [[1],[2,2,2],[3,3],[4,4,4,4]]    ;
    X = 2,             dif(Y,3),dif(Y,4), Pss = [[1],[2,2,2],[3,3],[Y],[4,4,4]]  ;
    X = Y,             Y = 3,             Pss = [[1],[2,2],[3,3,3,3],[4,4,4]]    ;
    X = 3,             Y = 4,             Pss = [[1],[2,2],[3,3,3],[4,4,4,4]]    ;
    X = 3,             dif(Y,3),dif(Y,4), Pss = [[1],[2,2],[3,3,3],[Y],[4,4,4]]  ;
    dif(X,2),dif(X,3), Y = 3,             Pss = [[1],[2,2],[X],[3,3,3],[4,4,4]]  ;
    dif(X,2),dif(X,3), Y = 4,             Pss = [[1],[2,2],[X],[3,3],[4,4,4,4]]  ;
    dif(X,2),dif(X,3), dif(Y,3),dif(Y,4), Pss = [[1],[2,2],[X],[3,3],[Y],[4,4,4]].
    

    Edit 2015-05-05

    Here's tpartition/4:

    tpartition(P_2,List,Ts,Fs) :- tpartition_ts_fs_(List,Ts,Fs,P_2).
    
    tpartition_ts_fs_([],[],[],_).
    tpartition_ts_fs_([X|Xs0],Ts,Fs,P_2) :-
       if_(call(P_2,X), (Ts = [X|Ts0], Fs = Fs0),
                        (Ts = Ts0,     Fs = [X|Fs0])),
       tpartition_ts_fs_(Xs0,Ts0,Fs0,P_2).
    

    Sample use:

    ?- tpartition(=(0), [1,2,3,4,0,1,2,3,0,0,1], Ts, Fs).
    Ts = [0, 0, 0],
    Fs = [1, 2, 3, 4, 1, 2, 3, 1].
    

    Edit 2015-05-15

    On and on, ... here's splitlistIf/3:

    split_if(P_2,As,Bss) :- splitlistIf(P_2,As,Bss).
    
    splitlistIf(P_2,As,Bss) :-
       list_pred_split(As,P_2,Bss).
    
    list_pred_split([],_,[]).
    list_pred_split([X|Xs],P_2,Bss) :-
       if_(call(P_2,X), list_pred_split(Xs,P_2,Bss),
                        (Bss = [[X|Ys]|Bss0], list_pred_open_split(Xs,P_2,Ys,Bss0))).
    
    list_pred_open_split([],_,[],[]).
    list_pred_open_split([X|Xs],P_2,Ys,Bss) :-
       if_(call(P_2,X), (Ys = [],      list_pred_split(Xs,P_2,Bss)),
                        (Ys = [X|Ys0], list_pred_open_split(Xs,P_2,Ys0,Bss))).
    

    Let's use it:

    ?- splitlistIf(=(x),[x,1,2,x,1,2,3,x,1,4,x,x,x,x,1,x,2,x,x,1],Xs).
    Xs = [[1, 2], [1, 2, 3], [1, 4], [1], [2], [1]].
    
    0 讨论(0)
  • 2020-11-22 05:08

    Quite in the same vein as mapadj/4 presented in an earlier answer... maybe the name is better.

    forallAdj(P_2,Xs) :-
       list_forallAdj(Xs,P_2).
    
    list_forallAdj([],_).
    list_forallAdj([X|Xs],P_2) :-
       list_forallAdj_prev(Xs,P_2,X).
    
    list_forallAdj_prev([],_,_).
    list_forallAdj_prev([X1|Xs],P_2,X0) :-
       call(P_2,X0,X1),
       list_forallAdj_prev(Xs,P_2,X1).
    

    Sample use:

    :- use_module(library(clpfd)).
    :- use_module(library(lambda)).
    
    ?- Ls = [0,_,_,_,_,_], forallAdj(\X0^X1^(X0 + 1 #= X1), Ls).
    Ls = [0, 1, 2, 3, 4, 5].
    

    Where could that take us?

    • forallAdj => existAdj
    • maybe variants with index (forallAdjI, existAdjI) like in Collections.List Module (F#)
    • findfirstAdj/pickfirstAdj also like F# find/pick
    0 讨论(0)
提交回复
热议问题