In CLP(FD), we frequently need to state: \"This is a list of integers and finite domain variables in (sometimes: strictly) ascending/descending order.\"
Is
Hoogle was not very useful, but Hayoo is!
so this is a special form of fold for a list, but it does not apply length list
times but one time less.
is not entirely general in its name, but in its signature. Maybe insisting on the most general name is not that helpful. Otherwise we just have entities all over?
The definition reads:
The isSortedBy function returns True iff the predicate returns true for all adjacent pairs of elements in the list.
Maybe: all_adjacent_pairs(R_2, Xs)
. which sounds a bit after having a looping construct that has adjacent_pair
as some modifier.
This is inspired by a toolbox of functional higher-order idioms I once implemented. Back then I found the corner cases agonizing, I still do today:) Also, finding good names is always an issue...
Consider meta-predicate mapadj/4
:
mapadj(Relation_4,As,Bs,Cs) :-
list_list_list_mapadj(As,Bs,Cs,Relation_4).
list_list_list_mapadj([],[],[],_).
list_list_list_mapadj([A|As],Bs,Cs,Relation_4) :-
list_prev_list_list_mapadj(As,A,Bs,Cs,Relation_4).
list_prev_list_list_mapadj([],_,[],[],_).
list_prev_list_list_mapadj([A1|As],A0,[B|Bs],[C|Cs],Relation_4) :-
call(Relation_4,A0,A1,B,C),
list_prev_list_list_mapadj(As,A1,Bs,Cs,Relation_4).
Sample uses:
z_z_sum_product(X,Y,Sum,Product) :-
Sum #= X + Y,
Product #= X * Y.
:- mapadj(z_z_sum_product,[], [], []).
:- mapadj(z_z_sum_product,[1], [], []).
:- mapadj(z_z_sum_product,[1,2], [3], [2]).
:- mapadj(z_z_sum_product,[1,2,3], [3,5], [2,6]).
:- mapadj(z_z_sum_product,[1,2,3,4],[3,5,7],[2,6,12]).
I'm aware of the rift in the corner cases As = []
and As = [_]
, still I feel this is as close to "for all adjacent list items" as it gets.
Also, all of this can easily be extended:
mapadj/2
(akin to chain/2
, except for the type-check with singleton lists)foldadjl/n
, scanadjl/n
Regarding names: IMO the l
/ r
suffix is required with fold
/ scan
, but not with map
.
Here comes the before-mentioned foldadjl/4
:
foldadjl(Relation_4,Xs) -->
list_foldadjl(Xs,Relation_4).
list_foldadjl([],_) -->
[].
list_foldadjl([X|Xs],Relation_4) -->
list_prev_foldadjl(Xs,X,Relation_4).
list_prev_foldadjl([],_,_) -->
[].
list_prev_foldadjl([X1|Xs],X0,Relation_4) -->
call(Relation_4,X0,X1),
list_prev_foldadjl(Xs,X1,Relation_4).
Here comes meta-predicate splitlistIfAdj/3
, based on
if_/3
which was proposed in a previous answer
on reification.
split_if_adj(P_3,As,Bss) :- splitlistIfAdj(P_3,As,Bss).
splitlistIfAdj(P_3,As,Bss) :-
list_split_(As,Bss,P_3).
list_split_([],[],_).
list_split_([X0|Xs], [Cs|Bss],P_3) :-
list_prev_split_(Xs,X0,Cs,Bss, P_3).
list_prev_split_([], X, [X],[],_).
list_prev_split_([X1|Xs],X0,[X0|Cs],Bss,P_3) :-
if_(call(P_3,X0,X1),
(Cs = [], Bss = [Cs0|Bss0]),
(Cs = Cs0, Bss = Bss0)),
list_prev_split_(Xs,X1,Cs0,Bss0,P_3).
To show it in use let's define dif/3
exactly the same way as (=)/3
but with flipped truth-value:
dif(X, Y, R) :- X == Y, !, R = false.
dif(X, Y, R) :- ?=(X, Y), !, R = true. % syntactically different
dif(X, Y, R) :- X \= Y, !, R = true. % semantically different
dif(X, Y, R) :- R == false, !, X = Y.
dif(X, X, false).
dif(X, Y, true) :-
dif(X, Y).
Now we use them in tandem:
?- splitlistIfAdj(dif,[1,2,2,3,3,3,4,4,4,4],Pss).
Pss = [[1],[2,2],[3,3,3],[4,4,4,4]]. % succeeds deterministically
What if we generalize some list items? Do we get multiple answers with the right pending goals?
First, a small example:
?- splitlistIfAdj(dif,[1,X,2],Pss).
X = 1, Pss = [[1,1],[2]] ;
X = 2, Pss = [[1],[2,2]] ;
dif(X,1),dif(X,2), Pss = [[1],[X],[2]].
A somewhat bigger example involving the two variables X
and Y
.
?- splitlistIfAdj(dif,[1,2,2,X,3,3,Y,4,4,4],Pss).
X = 2, Y = 3, Pss = [[1],[2,2,2],[3,3,3],[4,4,4]] ;
X = 2, Y = 4, Pss = [[1],[2,2,2],[3,3],[4,4,4,4]] ;
X = 2, dif(Y,3),dif(Y,4), Pss = [[1],[2,2,2],[3,3],[Y],[4,4,4]] ;
X = Y, Y = 3, Pss = [[1],[2,2],[3,3,3,3],[4,4,4]] ;
X = 3, Y = 4, Pss = [[1],[2,2],[3,3,3],[4,4,4,4]] ;
X = 3, dif(Y,3),dif(Y,4), Pss = [[1],[2,2],[3,3,3],[Y],[4,4,4]] ;
dif(X,2),dif(X,3), Y = 3, Pss = [[1],[2,2],[X],[3,3,3],[4,4,4]] ;
dif(X,2),dif(X,3), Y = 4, Pss = [[1],[2,2],[X],[3,3],[4,4,4,4]] ;
dif(X,2),dif(X,3), dif(Y,3),dif(Y,4), Pss = [[1],[2,2],[X],[3,3],[Y],[4,4,4]].
Here's tpartition/4
:
tpartition(P_2,List,Ts,Fs) :- tpartition_ts_fs_(List,Ts,Fs,P_2).
tpartition_ts_fs_([],[],[],_).
tpartition_ts_fs_([X|Xs0],Ts,Fs,P_2) :-
if_(call(P_2,X), (Ts = [X|Ts0], Fs = Fs0),
(Ts = Ts0, Fs = [X|Fs0])),
tpartition_ts_fs_(Xs0,Ts0,Fs0,P_2).
Sample use:
?- tpartition(=(0), [1,2,3,4,0,1,2,3,0,0,1], Ts, Fs).
Ts = [0, 0, 0],
Fs = [1, 2, 3, 4, 1, 2, 3, 1].
On and on, ... here's splitlistIf/3
:
split_if(P_2,As,Bss) :- splitlistIf(P_2,As,Bss).
splitlistIf(P_2,As,Bss) :-
list_pred_split(As,P_2,Bss).
list_pred_split([],_,[]).
list_pred_split([X|Xs],P_2,Bss) :-
if_(call(P_2,X), list_pred_split(Xs,P_2,Bss),
(Bss = [[X|Ys]|Bss0], list_pred_open_split(Xs,P_2,Ys,Bss0))).
list_pred_open_split([],_,[],[]).
list_pred_open_split([X|Xs],P_2,Ys,Bss) :-
if_(call(P_2,X), (Ys = [], list_pred_split(Xs,P_2,Bss)),
(Ys = [X|Ys0], list_pred_open_split(Xs,P_2,Ys0,Bss))).
Let's use it:
?- splitlistIf(=(x),[x,1,2,x,1,2,3,x,1,4,x,x,x,x,1,x,2,x,x,1],Xs).
Xs = [[1, 2], [1, 2, 3], [1, 4], [1], [2], [1]].
Quite in the same vein as mapadj/4
presented in an earlier answer... maybe the name is better.
forallAdj(P_2,Xs) :-
list_forallAdj(Xs,P_2).
list_forallAdj([],_).
list_forallAdj([X|Xs],P_2) :-
list_forallAdj_prev(Xs,P_2,X).
list_forallAdj_prev([],_,_).
list_forallAdj_prev([X1|Xs],P_2,X0) :-
call(P_2,X0,X1),
list_forallAdj_prev(Xs,P_2,X1).
Sample use:
:- use_module(library(clpfd)).
:- use_module(library(lambda)).
?- Ls = [0,_,_,_,_,_], forallAdj(\X0^X1^(X0 + 1 #= X1), Ls).
Ls = [0, 1, 2, 3, 4, 5].
Where could that take us?
forallAdj
=> existAdj
forallAdjI
, existAdjI
) like in Collections.List Module (F#)findfirstAdj
/pickfirstAdj
also like F# find
/pick