Finding cartesian product with PHP associative arrays

前端 未结 10 1875
醉梦人生
醉梦人生 2020-11-22 04:17

Say that I have an array like the following:

Array
(
    [arm] => Array
        (
            [0] => A
            [1] => B
            [2] => C
         


        
相关标签:
10条回答
  • 2020-11-22 04:57

    Here's what I could come up with:

    function inject($elem, $array) {
        return array_map(function ($n) use ($elem) { return array_merge((array)$elem, (array)$n); }, $array);
    }
    
    function zip($array1, $array2) {
        return array_reduce($array1, function ($v, $n) use ($array2) { return array_merge($v, inject($n, $array2));  }, array());
    }
    
    function cartesian_product($array) {
        $keys = array_keys($array);
        $prod = array_shift($array);
        $prod = array_reduce($array, 'zip', $prod);
        return array_map(function ($n) use ($keys) { return array_combine($keys, $n); }, $prod);
    }
    

    (Using pseudo array/list/dictionary notation below since PHP is simply too verbose for such things.)

    The inject function transforms a, [b] into [(a,b)], i.e. it injects a single value into each value of an array, returning an array of arrays. It doesn't matter whether a or b already is an array, it'll always return a two dimensional array.

    inject('a', ['foo', 'bar'])
        =>  [('a', 'foo'), ('b', 'bar')]
    

    The zip function applies the inject function to each element in an array.

    zip(['a', 'b'], ['foo', 'bar'])
        =>  [('a', 'foo'), ('a', 'bar'), ('b', 'foo'), ('b', 'bar')]
    

    Note that this actually produces a cartesian product, so zip is a slight misnomer. Simply applying this function to all elements in a data set in succession gives you the cartesian product for an array of any length.

    zip(zip(['a', 'b'], ['foo', 'bar']), ['42', '76'])
        =>  [('a', 'foo', '42'), ('a', 'foo', '76'), ('a', 'bar', '42'), …]
    

    This does not contain the keys, but since the elements are all in order within the result set, you can simply re-inject the keys into the result.

    array_combine(['key1', 'key2', 'key3'], ['a', 'foo', '42'])
        =>  [ key1 : 'a', key2 : 'foo', key3 : '42' ]
    

    Applying this to all elements in the product gives the desired result.

    You can collapse the above three functions into a single long statement if you wish (which would also clear up the misnomers).


    An "unrolled" version without anonymous functions for PHP <= 5.2 would look like this:

    function inject($elem, $array) {
        $elem = (array)$elem;
        foreach ($array as &$a) {
            $a = array_merge($elem, (array)$a);
        }
        return $array;
    }
    
    function zip($array1, $array2) {
        $prod = array();
        foreach ($array1 as $a) {
            $prod = array_merge($prod, inject($a, $array2));
        }
        return $prod;
    }
    
    function cartesian_product($array) {
        $keys = array_keys($array);
        $prod = array_shift($array);
        $prod = array_reduce($array, 'zip', $prod);
    
        foreach ($prod as &$a) {
            $a = array_combine($keys, $a);
        }
        return $prod;
    }
    
    0 讨论(0)
  • 2020-11-22 04:59

    Here's a solution I wouldn't be ashamed to show.

    Rationale

    Assume that we have an input array $input with N sub-arrays, as in your example. Each sub-array has Cn items, where n is its index inside $input, and its key is Kn. I will refer to the ith item of the nth sub-array as Vn,i.

    The algorithm below can be proved to work (barring bugs) by induction:

    1) For N = 1, the cartesian product is simply array(0 => array(K1 => V1,1), 1 => array(K1 => V1,2), ... ) -- C1 items in total. This can be done with a simple foreach.

    2) Assume that $result already holds the cartesian product of the first N-1 sub-arrays. The cartesian product of $result and the Nth sub-array can be produced this way:

    3) In each item (array) inside $product, add the value KN => VN,1. Remember the resulting item (with the added value); I 'll refer to it as $item.

    4a) For each array inside $product:

    4b) For each value in the set VN,2 ... VN,CN, add to $product a copy of $item, but change the value with the key KN to VN,m (for all 2 <= m <= CN).

    The two iterations 4a (over $product) and 4b (over the Nth input sub-array) ends up with $result having CN items for every item it had before the iterations, so in the end $result indeed contains the cartesian product of the first N sub arrays.

    Therefore the algorithm will work for any N.

    This was harder to write than it should have been. My formal proofs are definitely getting rusty...

    Code

    function cartesian($input) {
        $result = array();
    
        while (list($key, $values) = each($input)) {
            // If a sub-array is empty, it doesn't affect the cartesian product
            if (empty($values)) {
                continue;
            }
    
            // Seeding the product array with the values from the first sub-array
            if (empty($result)) {
                foreach($values as $value) {
                    $result[] = array($key => $value);
                }
            }
            else {
                // Second and subsequent input sub-arrays work like this:
                //   1. In each existing array inside $product, add an item with
                //      key == $key and value == first item in input sub-array
                //   2. Then, for each remaining item in current input sub-array,
                //      add a copy of each existing array inside $product with
                //      key == $key and value == first item of input sub-array
    
                // Store all items to be added to $product here; adding them
                // inside the foreach will result in an infinite loop
                $append = array();
    
                foreach($result as &$product) {
                    // Do step 1 above. array_shift is not the most efficient, but
                    // it allows us to iterate over the rest of the items with a
                    // simple foreach, making the code short and easy to read.
                    $product[$key] = array_shift($values);
    
                    // $product is by reference (that's why the key we added above
                    // will appear in the end result), so make a copy of it here
                    $copy = $product;
    
                    // Do step 2 above.
                    foreach($values as $item) {
                        $copy[$key] = $item;
                        $append[] = $copy;
                    }
    
                    // Undo the side effecst of array_shift
                    array_unshift($values, $product[$key]);
                }
    
                // Out of the foreach, we can add to $results now
                $result = array_merge($result, $append);
            }
        }
    
        return $result;
    }
    

    Usage

    $input = array(
        'arm' => array('A', 'B', 'C'),
        'gender' => array('Female', 'Male'),
        'location' => array('Vancouver', 'Calgary'),
    );
    
    print_r(cartesian($input));
    
    0 讨论(0)
  • 2020-11-22 05:02

    One algorithm is to expand at each step the previous results with the current step items:

    function cartezian1($inputArray)
    {
        $results = [];
    
        foreach ($inputArray as $group) {
            $results = expandItems($results, $group);
        }
    
        return $results;
    }
    
    function expandItems($sourceItems, $tails)
    {
        $result = [];
    
        if (empty($sourceItems)) {
            foreach ($tails as $tail) {
                $result[] = [$tail];
            }
            return $result;
        }
    
        foreach ($sourceItems as $sourceItem) {
            foreach ($tails as $tail) {
                $result[] = array_merge($sourceItem, [$tail]);
            }
        }
    
        return $result;
    }
    

    This solution uses memory to store the all combinations then returns them all at once. So, it's fast but it needs a lot of memory. Also, recursive functions are not used.

    0 讨论(0)
  • 2020-11-22 05:03

    Why not use a recursive generator ... memory issues: close to none
    (and it´s beautiful)

    function cartesian($a)
    {
        if ($a)
        {
            if($u=array_pop($a))
                foreach(cartesian($a)as$p)
                    foreach($u as$v)
                        yield $p+[count($p)=>$v];
        }
        else
            yield[];
    }
    

    note: this does not preserve keys; but it´s a start.

    This should do (not tested):

    function acartesian($a)
    {
        if ($a)
        {
            $k=end(array_keys($a));
            if($u=array_pop($a))
                foreach(acartesian($a)as$p)
                    foreach($u as$v)
                        yield $p+[$k=>$v];
        }
        else
            yield[];
    }
    
    0 讨论(0)
提交回复
热议问题