I\'m having trouble coming up with code to generate combinations from n number of arrays with m number of elements in them, in JavaScript. I\'ve seen similar questions about
Another implementation with ES6 recursive style
Array.prototype.cartesian = function(a,...as){
return a ? this.reduce((p,c) => (p.push(...a.cartesian(...as).map(e => as.length ? [c,...e] : [c,e])),p),[])
: this;
};
console.log(JSON.stringify([0,1].cartesian([0,1,2,3], [[0],[1],[2]])));
var f = function(arr){
if(typeof arr !== 'object'){
return false;
}
arr = arr.filter(function(elem){ return (elem !== null); }); // remove empty elements - make sure length is correct
var len = arr.length;
var nextPerm = function(){ // increase the counter(s)
var i = 0;
while(i < len)
{
arr[i].counter++;
if(arr[i].counter >= arr[i].length){
arr[i].counter = 0;
i++;
}else{
return false;
}
}
return true;
};
var getPerm = function(){ // get the current permutation
var perm_arr = [];
for(var i = 0; i < len; i++)
{
perm_arr.push(arr[i][arr[i].counter]);
}
return perm_arr;
};
var new_arr = [];
for(var i = 0; i < len; i++) // set up a counter property inside the arrays
{
arr[i].counter = 0;
}
while(true)
{
new_arr.push(getPerm()); // add current permutation to the new array
if(nextPerm() === true){ // get next permutation, if returns true, we got them all
break;
}
}
return new_arr;
};
Just for fun, here's a more functional variant of the solution in my first answer:
function cartesian() {
var r = [], args = Array.from(arguments);
args.reduceRight(function(cont, factor, i) {
return function(arr) {
for (var j=0, l=factor.length; j<l; j++) {
var a = arr.slice(); // clone arr
a[i] = factor[j];
cont(a);
}
};
}, Array.prototype.push.bind(r))(new Array(args.length));
return r;
}
Alternative, for full speed we can dynamically compile our own loops:
function cartesian() {
return (cartesian.cache[arguments.length] || cartesian.compile(arguments.length)).apply(null, arguments);
}
cartesian.cache = [];
cartesian.compile = function compile(n) {
var args = [],
indent = "",
up = "",
down = "";
for (var i=0; i<n; i++) {
var arr = "$"+String.fromCharCode(97+i),
ind = String.fromCharCode(105+i);
args.push(arr);
up += indent+"for (var "+ind+"=0, l"+arr+"="+arr+".length; "+ind+"<l"+arr+"; "+ind+"++) {\n";
down = indent+"}\n"+down;
indent += " ";
up += indent+"arr["+i+"] = "+arr+"["+ind+"];\n";
}
var body = "var res=[],\n arr=[];\n"+up+indent+"res.push(arr.slice());\n"+down+"return res;";
return cartesian.cache[n] = new Function(args, body);
}
After doing a little research I discovered a previous related question: Finding All Combinations of JavaScript array values
I've adapted some of the code from there so that it returns an array of arrays containing all of the permutations:
function(arraysToCombine) {
var divisors = [];
for (var i = arraysToCombine.length - 1; i >= 0; i--) {
divisors[i] = divisors[i + 1] ? divisors[i + 1] * arraysToCombine[i + 1].length : 1;
}
function getPermutation(n, arraysToCombine) {
var result = [],
curArray;
for (var i = 0; i < arraysToCombine.length; i++) {
curArray = arraysToCombine[i];
result.push(curArray[Math.floor(n / divisors[i]) % curArray.length]);
}
return result;
}
var numPerms = arraysToCombine[0].length;
for(var i = 1; i < arraysToCombine.length; i++) {
numPerms *= arraysToCombine[i].length;
}
var combinations = [];
for(var i = 0; i < numPerms; i++) {
combinations.push(getPermutation(i, arraysToCombine));
}
return combinations;
}
I've put a working copy at http://jsfiddle.net/7EakX/ that takes the array you gave earlier ([[0,1], [0,1,2,3], [0,1,2]]) and outputs the result to the browser console.
const charSet = [["A", "B"],["C", "D", "E"],["F", "G", "H", "I"]];
console.log(charSet.reduce((a,b)=>a.flatMap(x=>b.map(y=>x+y)),['']))
You could take an iterative approach by building sub arrays.
var parts = [[0, 1], [0, 1, 2, 3], [0, 1, 2]],
result = parts.reduce((a, b) => a.reduce((r, v) => r.concat(b.map(w => [].concat(v, w))), []));
console.log(result.map(a => a.join(', ')));
.as-console-wrapper { max-height: 100% !important; top: 0; }