Counting inversions in an array

前端 未结 30 1935
死守一世寂寞
死守一世寂寞 2020-11-22 04:14

I\'m designing an algorithm to do the following: Given array A[1... n], for every i < j, find all inversion pairs such that A[i] > A[j]

相关标签:
30条回答
  • 2020-11-22 04:32

    This answer contains the results of the timeit tests produced by the code in my main answer. Please see that answer for details!

    count_inversions speed test results
    
    Size = 5, hi = 2, 4096 loops
    ltree_count_PM2R         : 0.04871, 0.04872, 0.04876
    bruteforce_loops_PM2R    : 0.05696, 0.05700, 0.05776
    solution_TimBabych       : 0.05760, 0.05822, 0.05943
    solutionE_TimBabych      : 0.06642, 0.06704, 0.06760
    bruteforce_sum_PM2R      : 0.07523, 0.07545, 0.07563
    perm_sum_PM2R            : 0.09873, 0.09875, 0.09935
    rank_sum_PM2R            : 0.10449, 0.10463, 0.10468
    solution_python          : 0.13034, 0.13061, 0.13221
    fenwick_inline_PM2R      : 0.14323, 0.14610, 0.18802
    perm_radixR_PM2R         : 0.15146, 0.15203, 0.15235
    merge_count_BM           : 0.16179, 0.16267, 0.16467
    perm_radixI_PM2R         : 0.16200, 0.16202, 0.16768
    perm_fenwick_PM2R        : 0.16887, 0.16920, 0.17075
    merge_PM2R               : 0.18262, 0.18271, 0.18418
    count_inversions_NiklasB : 0.19183, 0.19279, 0.20388
    count_inversion_mkso     : 0.20060, 0.20141, 0.20398
    inv_cnt_ZheHu            : 0.20815, 0.20841, 0.20906
    fenwick_PM2R             : 0.22109, 0.22137, 0.22379
    reversePairs_nomanpouigt : 0.29620, 0.29689, 0.30293
    Value: 5
    
    Size = 10, hi = 5, 2048 loops
    solution_TimBabych       : 0.05954, 0.05989, 0.05991
    solutionE_TimBabych      : 0.05970, 0.05972, 0.05998
    perm_sum_PM2R            : 0.07517, 0.07519, 0.07520
    ltree_count_PM2R         : 0.07672, 0.07677, 0.07684
    bruteforce_loops_PM2R    : 0.07719, 0.07724, 0.07817
    rank_sum_PM2R            : 0.08587, 0.08823, 0.08864
    bruteforce_sum_PM2R      : 0.09470, 0.09472, 0.09484
    solution_python          : 0.13126, 0.13154, 0.13185
    perm_radixR_PM2R         : 0.14239, 0.14320, 0.14474
    perm_radixI_PM2R         : 0.14632, 0.14669, 0.14679
    fenwick_inline_PM2R      : 0.16796, 0.16831, 0.17030
    perm_fenwick_PM2R        : 0.18189, 0.18212, 0.18638
    merge_count_BM           : 0.19816, 0.19870, 0.19948
    count_inversions_NiklasB : 0.21807, 0.22031, 0.22215
    merge_PM2R               : 0.22037, 0.22048, 0.26106
    fenwick_PM2R             : 0.24290, 0.24314, 0.24744
    count_inversion_mkso     : 0.24895, 0.24899, 0.25205
    inv_cnt_ZheHu            : 0.26253, 0.26259, 0.26590
    reversePairs_nomanpouigt : 0.35711, 0.35762, 0.35973
    Value: 20
    
    Size = 20, hi = 10, 1024 loops
    solutionE_TimBabych      : 0.05687, 0.05696, 0.05720
    solution_TimBabych       : 0.06126, 0.06151, 0.06168
    perm_sum_PM2R            : 0.06875, 0.06906, 0.07054
    rank_sum_PM2R            : 0.07988, 0.07995, 0.08002
    ltree_count_PM2R         : 0.11232, 0.11239, 0.11257
    bruteforce_loops_PM2R    : 0.12553, 0.12584, 0.12592
    solution_python          : 0.13472, 0.13540, 0.13694
    bruteforce_sum_PM2R      : 0.15820, 0.15849, 0.16021
    perm_radixI_PM2R         : 0.17101, 0.17148, 0.17229
    perm_radixR_PM2R         : 0.17891, 0.18087, 0.18366
    perm_fenwick_PM2R        : 0.20554, 0.20708, 0.21412
    fenwick_inline_PM2R      : 0.21161, 0.21163, 0.22047
    merge_count_BM           : 0.24125, 0.24261, 0.24565
    count_inversions_NiklasB : 0.25712, 0.25754, 0.25778
    merge_PM2R               : 0.26477, 0.26566, 0.31297
    fenwick_PM2R             : 0.28178, 0.28216, 0.29069
    count_inversion_mkso     : 0.30286, 0.30290, 0.30652
    inv_cnt_ZheHu            : 0.32024, 0.32041, 0.32447
    reversePairs_nomanpouigt : 0.45812, 0.45822, 0.46172
    Value: 98
    
    Size = 40, hi = 20, 512 loops
    solutionE_TimBabych      : 0.05784, 0.05787, 0.05958
    solution_TimBabych       : 0.06452, 0.06475, 0.06479
    perm_sum_PM2R            : 0.07254, 0.07261, 0.07263
    rank_sum_PM2R            : 0.08537, 0.08540, 0.08572
    ltree_count_PM2R         : 0.11744, 0.11749, 0.11792
    solution_python          : 0.14262, 0.14285, 0.14465
    perm_radixI_PM2R         : 0.18774, 0.18776, 0.18922
    perm_radixR_PM2R         : 0.19425, 0.19435, 0.19609
    bruteforce_loops_PM2R    : 0.21500, 0.21511, 0.21686
    perm_fenwick_PM2R        : 0.23338, 0.23375, 0.23674
    fenwick_inline_PM2R      : 0.24947, 0.24958, 0.25189
    bruteforce_sum_PM2R      : 0.27627, 0.27646, 0.28041
    merge_count_BM           : 0.28059, 0.28128, 0.28294
    count_inversions_NiklasB : 0.28557, 0.28759, 0.29022
    merge_PM2R               : 0.29886, 0.29928, 0.30317
    fenwick_PM2R             : 0.30241, 0.30259, 0.35237
    count_inversion_mkso     : 0.34252, 0.34356, 0.34441
    inv_cnt_ZheHu            : 0.37468, 0.37569, 0.37847
    reversePairs_nomanpouigt : 0.50725, 0.50770, 0.50943
    Value: 369
    
    Size = 80, hi = 40, 256 loops
    solutionE_TimBabych      : 0.06339, 0.06373, 0.06513
    solution_TimBabych       : 0.06984, 0.06994, 0.07009
    perm_sum_PM2R            : 0.09171, 0.09172, 0.09186
    rank_sum_PM2R            : 0.10468, 0.10474, 0.10500
    ltree_count_PM2R         : 0.14416, 0.15187, 0.18541
    solution_python          : 0.17415, 0.17423, 0.17451
    perm_radixI_PM2R         : 0.20676, 0.20681, 0.20936
    perm_radixR_PM2R         : 0.21671, 0.21695, 0.21736
    perm_fenwick_PM2R        : 0.26197, 0.26252, 0.26264
    fenwick_inline_PM2R      : 0.28111, 0.28249, 0.28382
    count_inversions_NiklasB : 0.31746, 0.32448, 0.32451
    merge_count_BM           : 0.31964, 0.33842, 0.35276
    merge_PM2R               : 0.32890, 0.32941, 0.33322
    fenwick_PM2R             : 0.34355, 0.34377, 0.34873
    count_inversion_mkso     : 0.37689, 0.37698, 0.38079
    inv_cnt_ZheHu            : 0.42923, 0.42941, 0.43249
    bruteforce_loops_PM2R    : 0.43544, 0.43601, 0.43902
    bruteforce_sum_PM2R      : 0.52106, 0.52160, 0.52531
    reversePairs_nomanpouigt : 0.57805, 0.58156, 0.58252
    Value: 1467
    
    Size = 160, hi = 80, 128 loops
    solutionE_TimBabych      : 0.06766, 0.06784, 0.06963
    solution_TimBabych       : 0.07433, 0.07489, 0.07516
    perm_sum_PM2R            : 0.13143, 0.13175, 0.13179
    rank_sum_PM2R            : 0.14428, 0.14440, 0.14922
    solution_python          : 0.20072, 0.20076, 0.20084
    ltree_count_PM2R         : 0.20314, 0.20583, 0.24776
    perm_radixI_PM2R         : 0.23061, 0.23078, 0.23525
    perm_radixR_PM2R         : 0.23894, 0.23915, 0.24234
    perm_fenwick_PM2R        : 0.30984, 0.31181, 0.31503
    fenwick_inline_PM2R      : 0.31933, 0.32680, 0.32722
    merge_count_BM           : 0.36003, 0.36387, 0.36409
    count_inversions_NiklasB : 0.36796, 0.36814, 0.37106
    merge_PM2R               : 0.36847, 0.36848, 0.37127
    fenwick_PM2R             : 0.37833, 0.37847, 0.38095
    count_inversion_mkso     : 0.42746, 0.42747, 0.43184
    inv_cnt_ZheHu            : 0.48969, 0.48974, 0.49293
    reversePairs_nomanpouigt : 0.67791, 0.68157, 0.72420
    bruteforce_loops_PM2R    : 0.82816, 0.83175, 0.83282
    bruteforce_sum_PM2R      : 1.03322, 1.03378, 1.03562
    Value: 6194
    
    Size = 320, hi = 160, 64 loops
    solutionE_TimBabych      : 0.07467, 0.07470, 0.07483
    solution_TimBabych       : 0.08036, 0.08066, 0.08077
    perm_sum_PM2R            : 0.21142, 0.21201, 0.25766
    solution_python          : 0.22410, 0.22644, 0.22897
    rank_sum_PM2R            : 0.22820, 0.22851, 0.22877
    ltree_count_PM2R         : 0.24424, 0.24595, 0.24645
    perm_radixI_PM2R         : 0.25690, 0.25710, 0.26191
    perm_radixR_PM2R         : 0.26501, 0.26504, 0.26729
    perm_fenwick_PM2R        : 0.33483, 0.33507, 0.33845
    fenwick_inline_PM2R      : 0.34413, 0.34484, 0.35153
    merge_count_BM           : 0.39875, 0.39919, 0.40302
    fenwick_PM2R             : 0.40434, 0.40439, 0.40845
    merge_PM2R               : 0.40814, 0.41531, 0.51417
    count_inversions_NiklasB : 0.41681, 0.42009, 0.42128
    count_inversion_mkso     : 0.47132, 0.47192, 0.47385
    inv_cnt_ZheHu            : 0.54468, 0.54750, 0.54893
    reversePairs_nomanpouigt : 0.76164, 0.76389, 0.80357
    bruteforce_loops_PM2R    : 1.59125, 1.60430, 1.64131
    bruteforce_sum_PM2R      : 2.03734, 2.03834, 2.03975
    Value: 24959
    
    Run 2
    
    Size = 640, hi = 320, 8 loops
    solutionE_TimBabych      : 0.04135, 0.04374, 0.04575
    ltree_count_PM2R         : 0.06738, 0.06758, 0.06874
    perm_radixI_PM2R         : 0.06928, 0.06943, 0.07019
    fenwick_inline_PM2R      : 0.07850, 0.07856, 0.08059
    perm_fenwick_PM2R        : 0.08151, 0.08162, 0.08170
    perm_sum_PM2R            : 0.09122, 0.09133, 0.09221
    rank_sum_PM2R            : 0.09549, 0.09603, 0.11270
    merge_count_BM           : 0.10733, 0.10807, 0.11032
    count_inversions_NiklasB : 0.12460, 0.19865, 0.20205
    solution_python          : 0.13514, 0.13585, 0.13814
    
    Size = 1280, hi = 640, 8 loops
    solutionE_TimBabych      : 0.04714, 0.04742, 0.04752
    perm_radixI_PM2R         : 0.15325, 0.15388, 0.15525
    solution_python          : 0.15709, 0.15715, 0.16076
    fenwick_inline_PM2R      : 0.16048, 0.16160, 0.16403
    ltree_count_PM2R         : 0.16213, 0.16238, 0.16428
    perm_fenwick_PM2R        : 0.16408, 0.16416, 0.16449
    count_inversions_NiklasB : 0.19755, 0.19833, 0.19897
    merge_count_BM           : 0.23736, 0.23793, 0.23912
    perm_sum_PM2R            : 0.32946, 0.32969, 0.33277
    rank_sum_PM2R            : 0.34637, 0.34756, 0.34858
    
    Size = 2560, hi = 1280, 8 loops
    solutionE_TimBabych      : 0.10898, 0.11005, 0.11025
    perm_radixI_PM2R         : 0.33345, 0.33352, 0.37656
    ltree_count_PM2R         : 0.34670, 0.34786, 0.34833
    perm_fenwick_PM2R        : 0.34816, 0.34879, 0.35214
    fenwick_inline_PM2R      : 0.36196, 0.36455, 0.36741
    solution_python          : 0.36498, 0.36637, 0.40887
    count_inversions_NiklasB : 0.42274, 0.42745, 0.42995
    merge_count_BM           : 0.50799, 0.50898, 0.50917
    perm_sum_PM2R            : 1.27773, 1.27897, 1.27951
    rank_sum_PM2R            : 1.29728, 1.30389, 1.30448
    
    Size = 5120, hi = 2560, 8 loops
    solutionE_TimBabych      : 0.26914, 0.26993, 0.27253
    perm_radixI_PM2R         : 0.71416, 0.71634, 0.71753
    perm_fenwick_PM2R        : 0.71976, 0.72078, 0.72078
    fenwick_inline_PM2R      : 0.72776, 0.72804, 0.73143
    ltree_count_PM2R         : 0.81972, 0.82043, 0.82290
    solution_python          : 0.83714, 0.83756, 0.83962
    count_inversions_NiklasB : 0.87282, 0.87395, 0.92087
    merge_count_BM           : 1.09496, 1.09584, 1.10207
    rank_sum_PM2R            : 5.02564, 5.06277, 5.06666
    perm_sum_PM2R            : 5.09088, 5.12999, 5.13512
    
    Size = 10240, hi = 5120, 8 loops
    solutionE_TimBabych      : 0.71556, 0.71718, 0.72201
    perm_radixI_PM2R         : 1.54785, 1.55096, 1.55515
    perm_fenwick_PM2R        : 1.55103, 1.55353, 1.59298
    fenwick_inline_PM2R      : 1.57118, 1.57240, 1.57271
    ltree_count_PM2R         : 1.76240, 1.76247, 1.80944
    count_inversions_NiklasB : 1.86543, 1.86851, 1.87208
    solution_python          : 2.01490, 2.01519, 2.06423
    merge_count_BM           : 2.35215, 2.35301, 2.40023
    rank_sum_PM2R            : 20.07048, 20.08399, 20.13200
    perm_sum_PM2R            : 20.10187, 20.12551, 20.12683
    
    Run 3
    Size = 20480, hi = 10240, 4 loops
    solutionE_TimBabych      : 1.07636, 1.08243, 1.09569
    perm_radixI_PM2R         : 1.59579, 1.60519, 1.61785
    perm_fenwick_PM2R        : 1.66885, 1.68549, 1.71109
    fenwick_inline_PM2R      : 1.72073, 1.72752, 1.77217
    ltree_count_PM2R         : 1.96900, 1.97820, 2.02578
    count_inversions_NiklasB : 2.03257, 2.05005, 2.18548
    merge_count_BM           : 2.46768, 2.47377, 2.52133
    solution_python          : 2.49833, 2.50179, 3.79819
    
    Size = 40960, hi = 20480, 4 loops
    solutionE_TimBabych      : 3.51733, 3.52008, 3.56996
    perm_radixI_PM2R         : 3.51736, 3.52365, 3.56459
    perm_fenwick_PM2R        : 3.76097, 3.80900, 3.87974
    fenwick_inline_PM2R      : 3.95099, 3.96300, 3.99748
    ltree_count_PM2R         : 4.49866, 4.54652, 5.39716
    count_inversions_NiklasB : 4.61851, 4.64303, 4.73026
    merge_count_BM           : 5.31945, 5.35378, 5.35951
    solution_python          : 6.78756, 6.82911, 6.98217
    
    Size = 81920, hi = 40960, 4 loops
    perm_radixI_PM2R         : 7.68723, 7.71986, 7.72135
    perm_fenwick_PM2R        : 8.52404, 8.53349, 8.53710
    fenwick_inline_PM2R      : 8.97082, 8.97561, 8.98347
    ltree_count_PM2R         : 10.01142, 10.01426, 10.03216
    count_inversions_NiklasB : 10.60807, 10.62424, 10.70425
    merge_count_BM           : 11.42149, 11.42342, 11.47003
    solutionE_TimBabych      : 12.83390, 12.83485, 12.89747
    solution_python          : 19.66092, 19.67067, 20.72204
    
    Size = 163840, hi = 81920, 4 loops
    perm_radixI_PM2R         : 17.14153, 17.16885, 17.22240
    perm_fenwick_PM2R        : 19.25944, 19.27844, 20.27568
    fenwick_inline_PM2R      : 19.78221, 19.80219, 19.80766
    ltree_count_PM2R         : 22.42240, 22.43259, 22.48837
    count_inversions_NiklasB : 22.97341, 23.01516, 23.98052
    merge_count_BM           : 24.42683, 24.48559, 24.51488
    solutionE_TimBabych      : 60.96006, 61.20145, 63.71835
    solution_python          : 73.75132, 73.79854, 73.95874
    
    Size = 327680, hi = 163840, 4 loops
    perm_radixI_PM2R         : 36.56715, 36.60221, 37.05071
    perm_fenwick_PM2R        : 42.21616, 42.21838, 42.26053
    fenwick_inline_PM2R      : 43.04987, 43.09075, 43.13287
    ltree_count_PM2R         : 49.87400, 50.08509, 50.69292
    count_inversions_NiklasB : 50.74591, 50.75012, 50.75551
    merge_count_BM           : 52.37284, 52.51491, 53.43003
    solutionE_TimBabych      : 373.67198, 377.03341, 377.42360
    solution_python          : 411.69178, 411.92691, 412.83856
    
    Size = 655360, hi = 327680, 4 loops
    perm_radixI_PM2R         : 78.51927, 78.66327, 79.46325
    perm_fenwick_PM2R        : 90.64711, 90.80328, 91.76126
    fenwick_inline_PM2R      : 93.32482, 93.39086, 94.28880
    count_inversions_NiklasB : 107.74393, 107.80036, 108.71443
    ltree_count_PM2R         : 109.11328, 109.23592, 110.18247
    merge_count_BM           : 111.05633, 111.07840, 112.05861
    solutionE_TimBabych      : 1830.46443, 1836.39960, 1849.53918
    solution_python          : 1911.03692, 1912.04484, 1914.69786
    
    0 讨论(0)
  • 2020-11-22 04:32

    Solution One.Work well when there is a large amount of numbers

    def countInversions(arr):
     n = len(arr)
     if n == 1:
        return 0
     n1 = n // 2
     n2 = n - n1
     arr1 = arr[:n1]
     arr2 = arr[n1:]
     # print(n1,'||',n1,'||',arr1,'||',arr2)
     ans = countInversions(arr1) + countInversions(arr2)
     print(ans)
     i1 = 0
     i2 = 0
     for i in range(n):
         # print(i1,n1,i2,n2)
         if i1 < n1 and (i2 >= n2 or arr1[i1] <= arr2[i2]):
             arr[i] = arr1[i1]
             ans += i2
             i1 += 1
         elif i2 < n2:
             arr[i] = arr2[i2]
             i2 += 1
     return ans
    

    Solution Two.Simple solution.

    def countInversions(arr):
          count = 0
          for i in range(len(arr)):
              for j in range(i, len(arr)):
                   # print(arr[i:len(arr)])
                     if arr[i] > arr[j]:
                         print(arr[i], arr[j])
                         count += 1
          print(count)
    
    0 讨论(0)
  • 2020-11-22 04:33
    public static int mergeSort(int[] a, int p, int r)
    {
        int countInversion = 0;
        if(p < r)
        {
            int q = (p + r)/2;
            countInversion = mergeSort(a, p, q);
            countInversion += mergeSort(a, q+1, r);
            countInversion += merge(a, p, q, r);
        }
        return countInversion;
    }
    
    public static int merge(int[] a, int p, int q, int r)
    {
        //p=0, q=1, r=3
        int countingInversion = 0;
        int n1 = q-p+1;
        int n2 = r-q;
        int[] temp1 = new int[n1+1];
        int[] temp2 = new int[n2+1];
        for(int i=0; i<n1; i++) temp1[i] = a[p+i];
        for(int i=0; i<n2; i++) temp2[i] = a[q+1+i];
    
        temp1[n1] = Integer.MAX_VALUE;
        temp2[n2] = Integer.MAX_VALUE;
        int i = 0, j = 0;
    
        for(int k=p; k<=r; k++)
        {
            if(temp1[i] <= temp2[j])
            {
                a[k] = temp1[i];
                i++;
            }
            else
            {
                a[k] = temp2[j];
                j++;
                countingInversion=countingInversion+(n1-i); 
            }
        }
        return countingInversion;
    }
    public static void main(String[] args)
    {
        int[] a = {1, 20, 6, 4, 5};
        int countInversion = mergeSort(a, 0, a.length-1);
        System.out.println(countInversion);
    }
    
    0 讨论(0)
  • 2020-11-22 04:33

    Another Python solution, short one. Makes use of builtin bisect module, which provides functions to insert element into its place in sorted array and to find index of element in sorted array.

    The idea is to store elements left of n-th in such array, which would allow us to easily find the number of them greater than n-th.

    import bisect
    def solution(A):
        sorted_left = []
        res = 0
        for i in xrange(1, len(A)):
            bisect.insort_left(sorted_left, A[i-1])
            # i is also the length of sorted_left
            res += (i - bisect.bisect(sorted_left, A[i]))
        return res
    
    0 讨论(0)
  • 2020-11-22 04:36

    Here is c++ solution

    /**
    *array sorting needed to verify if first arrays n'th element is greater than sencond arrays
    *some element then all elements following n will do the same
    */
    #include<stdio.h>
    #include<iostream>
    using namespace std;
    int countInversions(int array[],int size);
    int merge(int arr1[],int size1,int arr2[],int size2,int[]);
    int main()
    {
        int array[] = {2, 4, 1, 3, 5};
        int size = sizeof(array) / sizeof(array[0]);
        int x = countInversions(array,size);
        printf("number of inversions = %d",x);
    }
    
    int countInversions(int array[],int size)
    {
        if(size > 1 )
        {
        int mid = size / 2;
        int count1 = countInversions(array,mid);
        int count2 = countInversions(array+mid,size-mid);
        int temp[size];
        int count3 = merge(array,mid,array+mid,size-mid,temp);
        for(int x =0;x<size ;x++)
        {
            array[x] = temp[x];
        }
        return count1 + count2 + count3;
        }else{
            return 0;
        }
    }
    
    int merge(int arr1[],int size1,int arr2[],int size2,int temp[])
    {
        int count  = 0;
        int a = 0;
        int b = 0;
        int c = 0;
        while(a < size1 && b < size2)
        {
            if(arr1[a] < arr2[b])
            {
                temp[c] = arr1[a];
                c++;
                a++;
            }else{
                temp[c] = arr2[b];
                b++;
                c++;
                count = count + size1 -a;
            }
        }
    
        while(a < size1)
        {
            temp[c] = arr1[a];
            c++;a++;
        }
    
    while(b < size2)
        {
            temp[c] = arr2[b];
            c++;b++;
        }
    
        return count;
    }
    
    0 讨论(0)
  • 2020-11-22 04:38

    So here is O(n log n) solution in java.

    long merge(int[] arr, int[] left, int[] right) {
        int i = 0, j = 0, count = 0;
        while (i < left.length || j < right.length) {
            if (i == left.length) {
                arr[i+j] = right[j];
                j++;
            } else if (j == right.length) {
                arr[i+j] = left[i];
                i++;
            } else if (left[i] <= right[j]) {
                arr[i+j] = left[i];
                i++;                
            } else {
                arr[i+j] = right[j];
                count += left.length-i;
                j++;
            }
        }
        return count;
    }
    
    long invCount(int[] arr) {
        if (arr.length < 2)
            return 0;
    
        int m = (arr.length + 1) / 2;
        int left[] = Arrays.copyOfRange(arr, 0, m);
        int right[] = Arrays.copyOfRange(arr, m, arr.length);
    
        return invCount(left) + invCount(right) + merge(arr, left, right);
    }
    

    This is almost normal merge sort, the whole magic is hidden in merge function. Note that while sorting algorithm remove inversions. While merging algorithm counts number of removed inversions (sorted out one might say).

    The only moment when inversions are removed is when algorithm takes element from the right side of an array and merge it to the main array. The number of inversions removed by this operation is the number of elements left from the the left array to be merged. :)

    Hope it's explanatory enough.

    0 讨论(0)
提交回复
热议问题