I\'m designing an algorithm to do the following: Given array A[1... n]
, for every i < j
, find all inversion pairs such that A[i] > A[j]
This answer contains the results of the timeit
tests produced by the code in my main answer. Please see that answer for details!
count_inversions speed test results
Size = 5, hi = 2, 4096 loops
ltree_count_PM2R : 0.04871, 0.04872, 0.04876
bruteforce_loops_PM2R : 0.05696, 0.05700, 0.05776
solution_TimBabych : 0.05760, 0.05822, 0.05943
solutionE_TimBabych : 0.06642, 0.06704, 0.06760
bruteforce_sum_PM2R : 0.07523, 0.07545, 0.07563
perm_sum_PM2R : 0.09873, 0.09875, 0.09935
rank_sum_PM2R : 0.10449, 0.10463, 0.10468
solution_python : 0.13034, 0.13061, 0.13221
fenwick_inline_PM2R : 0.14323, 0.14610, 0.18802
perm_radixR_PM2R : 0.15146, 0.15203, 0.15235
merge_count_BM : 0.16179, 0.16267, 0.16467
perm_radixI_PM2R : 0.16200, 0.16202, 0.16768
perm_fenwick_PM2R : 0.16887, 0.16920, 0.17075
merge_PM2R : 0.18262, 0.18271, 0.18418
count_inversions_NiklasB : 0.19183, 0.19279, 0.20388
count_inversion_mkso : 0.20060, 0.20141, 0.20398
inv_cnt_ZheHu : 0.20815, 0.20841, 0.20906
fenwick_PM2R : 0.22109, 0.22137, 0.22379
reversePairs_nomanpouigt : 0.29620, 0.29689, 0.30293
Value: 5
Size = 10, hi = 5, 2048 loops
solution_TimBabych : 0.05954, 0.05989, 0.05991
solutionE_TimBabych : 0.05970, 0.05972, 0.05998
perm_sum_PM2R : 0.07517, 0.07519, 0.07520
ltree_count_PM2R : 0.07672, 0.07677, 0.07684
bruteforce_loops_PM2R : 0.07719, 0.07724, 0.07817
rank_sum_PM2R : 0.08587, 0.08823, 0.08864
bruteforce_sum_PM2R : 0.09470, 0.09472, 0.09484
solution_python : 0.13126, 0.13154, 0.13185
perm_radixR_PM2R : 0.14239, 0.14320, 0.14474
perm_radixI_PM2R : 0.14632, 0.14669, 0.14679
fenwick_inline_PM2R : 0.16796, 0.16831, 0.17030
perm_fenwick_PM2R : 0.18189, 0.18212, 0.18638
merge_count_BM : 0.19816, 0.19870, 0.19948
count_inversions_NiklasB : 0.21807, 0.22031, 0.22215
merge_PM2R : 0.22037, 0.22048, 0.26106
fenwick_PM2R : 0.24290, 0.24314, 0.24744
count_inversion_mkso : 0.24895, 0.24899, 0.25205
inv_cnt_ZheHu : 0.26253, 0.26259, 0.26590
reversePairs_nomanpouigt : 0.35711, 0.35762, 0.35973
Value: 20
Size = 20, hi = 10, 1024 loops
solutionE_TimBabych : 0.05687, 0.05696, 0.05720
solution_TimBabych : 0.06126, 0.06151, 0.06168
perm_sum_PM2R : 0.06875, 0.06906, 0.07054
rank_sum_PM2R : 0.07988, 0.07995, 0.08002
ltree_count_PM2R : 0.11232, 0.11239, 0.11257
bruteforce_loops_PM2R : 0.12553, 0.12584, 0.12592
solution_python : 0.13472, 0.13540, 0.13694
bruteforce_sum_PM2R : 0.15820, 0.15849, 0.16021
perm_radixI_PM2R : 0.17101, 0.17148, 0.17229
perm_radixR_PM2R : 0.17891, 0.18087, 0.18366
perm_fenwick_PM2R : 0.20554, 0.20708, 0.21412
fenwick_inline_PM2R : 0.21161, 0.21163, 0.22047
merge_count_BM : 0.24125, 0.24261, 0.24565
count_inversions_NiklasB : 0.25712, 0.25754, 0.25778
merge_PM2R : 0.26477, 0.26566, 0.31297
fenwick_PM2R : 0.28178, 0.28216, 0.29069
count_inversion_mkso : 0.30286, 0.30290, 0.30652
inv_cnt_ZheHu : 0.32024, 0.32041, 0.32447
reversePairs_nomanpouigt : 0.45812, 0.45822, 0.46172
Value: 98
Size = 40, hi = 20, 512 loops
solutionE_TimBabych : 0.05784, 0.05787, 0.05958
solution_TimBabych : 0.06452, 0.06475, 0.06479
perm_sum_PM2R : 0.07254, 0.07261, 0.07263
rank_sum_PM2R : 0.08537, 0.08540, 0.08572
ltree_count_PM2R : 0.11744, 0.11749, 0.11792
solution_python : 0.14262, 0.14285, 0.14465
perm_radixI_PM2R : 0.18774, 0.18776, 0.18922
perm_radixR_PM2R : 0.19425, 0.19435, 0.19609
bruteforce_loops_PM2R : 0.21500, 0.21511, 0.21686
perm_fenwick_PM2R : 0.23338, 0.23375, 0.23674
fenwick_inline_PM2R : 0.24947, 0.24958, 0.25189
bruteforce_sum_PM2R : 0.27627, 0.27646, 0.28041
merge_count_BM : 0.28059, 0.28128, 0.28294
count_inversions_NiklasB : 0.28557, 0.28759, 0.29022
merge_PM2R : 0.29886, 0.29928, 0.30317
fenwick_PM2R : 0.30241, 0.30259, 0.35237
count_inversion_mkso : 0.34252, 0.34356, 0.34441
inv_cnt_ZheHu : 0.37468, 0.37569, 0.37847
reversePairs_nomanpouigt : 0.50725, 0.50770, 0.50943
Value: 369
Size = 80, hi = 40, 256 loops
solutionE_TimBabych : 0.06339, 0.06373, 0.06513
solution_TimBabych : 0.06984, 0.06994, 0.07009
perm_sum_PM2R : 0.09171, 0.09172, 0.09186
rank_sum_PM2R : 0.10468, 0.10474, 0.10500
ltree_count_PM2R : 0.14416, 0.15187, 0.18541
solution_python : 0.17415, 0.17423, 0.17451
perm_radixI_PM2R : 0.20676, 0.20681, 0.20936
perm_radixR_PM2R : 0.21671, 0.21695, 0.21736
perm_fenwick_PM2R : 0.26197, 0.26252, 0.26264
fenwick_inline_PM2R : 0.28111, 0.28249, 0.28382
count_inversions_NiklasB : 0.31746, 0.32448, 0.32451
merge_count_BM : 0.31964, 0.33842, 0.35276
merge_PM2R : 0.32890, 0.32941, 0.33322
fenwick_PM2R : 0.34355, 0.34377, 0.34873
count_inversion_mkso : 0.37689, 0.37698, 0.38079
inv_cnt_ZheHu : 0.42923, 0.42941, 0.43249
bruteforce_loops_PM2R : 0.43544, 0.43601, 0.43902
bruteforce_sum_PM2R : 0.52106, 0.52160, 0.52531
reversePairs_nomanpouigt : 0.57805, 0.58156, 0.58252
Value: 1467
Size = 160, hi = 80, 128 loops
solutionE_TimBabych : 0.06766, 0.06784, 0.06963
solution_TimBabych : 0.07433, 0.07489, 0.07516
perm_sum_PM2R : 0.13143, 0.13175, 0.13179
rank_sum_PM2R : 0.14428, 0.14440, 0.14922
solution_python : 0.20072, 0.20076, 0.20084
ltree_count_PM2R : 0.20314, 0.20583, 0.24776
perm_radixI_PM2R : 0.23061, 0.23078, 0.23525
perm_radixR_PM2R : 0.23894, 0.23915, 0.24234
perm_fenwick_PM2R : 0.30984, 0.31181, 0.31503
fenwick_inline_PM2R : 0.31933, 0.32680, 0.32722
merge_count_BM : 0.36003, 0.36387, 0.36409
count_inversions_NiklasB : 0.36796, 0.36814, 0.37106
merge_PM2R : 0.36847, 0.36848, 0.37127
fenwick_PM2R : 0.37833, 0.37847, 0.38095
count_inversion_mkso : 0.42746, 0.42747, 0.43184
inv_cnt_ZheHu : 0.48969, 0.48974, 0.49293
reversePairs_nomanpouigt : 0.67791, 0.68157, 0.72420
bruteforce_loops_PM2R : 0.82816, 0.83175, 0.83282
bruteforce_sum_PM2R : 1.03322, 1.03378, 1.03562
Value: 6194
Size = 320, hi = 160, 64 loops
solutionE_TimBabych : 0.07467, 0.07470, 0.07483
solution_TimBabych : 0.08036, 0.08066, 0.08077
perm_sum_PM2R : 0.21142, 0.21201, 0.25766
solution_python : 0.22410, 0.22644, 0.22897
rank_sum_PM2R : 0.22820, 0.22851, 0.22877
ltree_count_PM2R : 0.24424, 0.24595, 0.24645
perm_radixI_PM2R : 0.25690, 0.25710, 0.26191
perm_radixR_PM2R : 0.26501, 0.26504, 0.26729
perm_fenwick_PM2R : 0.33483, 0.33507, 0.33845
fenwick_inline_PM2R : 0.34413, 0.34484, 0.35153
merge_count_BM : 0.39875, 0.39919, 0.40302
fenwick_PM2R : 0.40434, 0.40439, 0.40845
merge_PM2R : 0.40814, 0.41531, 0.51417
count_inversions_NiklasB : 0.41681, 0.42009, 0.42128
count_inversion_mkso : 0.47132, 0.47192, 0.47385
inv_cnt_ZheHu : 0.54468, 0.54750, 0.54893
reversePairs_nomanpouigt : 0.76164, 0.76389, 0.80357
bruteforce_loops_PM2R : 1.59125, 1.60430, 1.64131
bruteforce_sum_PM2R : 2.03734, 2.03834, 2.03975
Value: 24959
Run 2
Size = 640, hi = 320, 8 loops
solutionE_TimBabych : 0.04135, 0.04374, 0.04575
ltree_count_PM2R : 0.06738, 0.06758, 0.06874
perm_radixI_PM2R : 0.06928, 0.06943, 0.07019
fenwick_inline_PM2R : 0.07850, 0.07856, 0.08059
perm_fenwick_PM2R : 0.08151, 0.08162, 0.08170
perm_sum_PM2R : 0.09122, 0.09133, 0.09221
rank_sum_PM2R : 0.09549, 0.09603, 0.11270
merge_count_BM : 0.10733, 0.10807, 0.11032
count_inversions_NiklasB : 0.12460, 0.19865, 0.20205
solution_python : 0.13514, 0.13585, 0.13814
Size = 1280, hi = 640, 8 loops
solutionE_TimBabych : 0.04714, 0.04742, 0.04752
perm_radixI_PM2R : 0.15325, 0.15388, 0.15525
solution_python : 0.15709, 0.15715, 0.16076
fenwick_inline_PM2R : 0.16048, 0.16160, 0.16403
ltree_count_PM2R : 0.16213, 0.16238, 0.16428
perm_fenwick_PM2R : 0.16408, 0.16416, 0.16449
count_inversions_NiklasB : 0.19755, 0.19833, 0.19897
merge_count_BM : 0.23736, 0.23793, 0.23912
perm_sum_PM2R : 0.32946, 0.32969, 0.33277
rank_sum_PM2R : 0.34637, 0.34756, 0.34858
Size = 2560, hi = 1280, 8 loops
solutionE_TimBabych : 0.10898, 0.11005, 0.11025
perm_radixI_PM2R : 0.33345, 0.33352, 0.37656
ltree_count_PM2R : 0.34670, 0.34786, 0.34833
perm_fenwick_PM2R : 0.34816, 0.34879, 0.35214
fenwick_inline_PM2R : 0.36196, 0.36455, 0.36741
solution_python : 0.36498, 0.36637, 0.40887
count_inversions_NiklasB : 0.42274, 0.42745, 0.42995
merge_count_BM : 0.50799, 0.50898, 0.50917
perm_sum_PM2R : 1.27773, 1.27897, 1.27951
rank_sum_PM2R : 1.29728, 1.30389, 1.30448
Size = 5120, hi = 2560, 8 loops
solutionE_TimBabych : 0.26914, 0.26993, 0.27253
perm_radixI_PM2R : 0.71416, 0.71634, 0.71753
perm_fenwick_PM2R : 0.71976, 0.72078, 0.72078
fenwick_inline_PM2R : 0.72776, 0.72804, 0.73143
ltree_count_PM2R : 0.81972, 0.82043, 0.82290
solution_python : 0.83714, 0.83756, 0.83962
count_inversions_NiklasB : 0.87282, 0.87395, 0.92087
merge_count_BM : 1.09496, 1.09584, 1.10207
rank_sum_PM2R : 5.02564, 5.06277, 5.06666
perm_sum_PM2R : 5.09088, 5.12999, 5.13512
Size = 10240, hi = 5120, 8 loops
solutionE_TimBabych : 0.71556, 0.71718, 0.72201
perm_radixI_PM2R : 1.54785, 1.55096, 1.55515
perm_fenwick_PM2R : 1.55103, 1.55353, 1.59298
fenwick_inline_PM2R : 1.57118, 1.57240, 1.57271
ltree_count_PM2R : 1.76240, 1.76247, 1.80944
count_inversions_NiklasB : 1.86543, 1.86851, 1.87208
solution_python : 2.01490, 2.01519, 2.06423
merge_count_BM : 2.35215, 2.35301, 2.40023
rank_sum_PM2R : 20.07048, 20.08399, 20.13200
perm_sum_PM2R : 20.10187, 20.12551, 20.12683
Run 3
Size = 20480, hi = 10240, 4 loops
solutionE_TimBabych : 1.07636, 1.08243, 1.09569
perm_radixI_PM2R : 1.59579, 1.60519, 1.61785
perm_fenwick_PM2R : 1.66885, 1.68549, 1.71109
fenwick_inline_PM2R : 1.72073, 1.72752, 1.77217
ltree_count_PM2R : 1.96900, 1.97820, 2.02578
count_inversions_NiklasB : 2.03257, 2.05005, 2.18548
merge_count_BM : 2.46768, 2.47377, 2.52133
solution_python : 2.49833, 2.50179, 3.79819
Size = 40960, hi = 20480, 4 loops
solutionE_TimBabych : 3.51733, 3.52008, 3.56996
perm_radixI_PM2R : 3.51736, 3.52365, 3.56459
perm_fenwick_PM2R : 3.76097, 3.80900, 3.87974
fenwick_inline_PM2R : 3.95099, 3.96300, 3.99748
ltree_count_PM2R : 4.49866, 4.54652, 5.39716
count_inversions_NiklasB : 4.61851, 4.64303, 4.73026
merge_count_BM : 5.31945, 5.35378, 5.35951
solution_python : 6.78756, 6.82911, 6.98217
Size = 81920, hi = 40960, 4 loops
perm_radixI_PM2R : 7.68723, 7.71986, 7.72135
perm_fenwick_PM2R : 8.52404, 8.53349, 8.53710
fenwick_inline_PM2R : 8.97082, 8.97561, 8.98347
ltree_count_PM2R : 10.01142, 10.01426, 10.03216
count_inversions_NiklasB : 10.60807, 10.62424, 10.70425
merge_count_BM : 11.42149, 11.42342, 11.47003
solutionE_TimBabych : 12.83390, 12.83485, 12.89747
solution_python : 19.66092, 19.67067, 20.72204
Size = 163840, hi = 81920, 4 loops
perm_radixI_PM2R : 17.14153, 17.16885, 17.22240
perm_fenwick_PM2R : 19.25944, 19.27844, 20.27568
fenwick_inline_PM2R : 19.78221, 19.80219, 19.80766
ltree_count_PM2R : 22.42240, 22.43259, 22.48837
count_inversions_NiklasB : 22.97341, 23.01516, 23.98052
merge_count_BM : 24.42683, 24.48559, 24.51488
solutionE_TimBabych : 60.96006, 61.20145, 63.71835
solution_python : 73.75132, 73.79854, 73.95874
Size = 327680, hi = 163840, 4 loops
perm_radixI_PM2R : 36.56715, 36.60221, 37.05071
perm_fenwick_PM2R : 42.21616, 42.21838, 42.26053
fenwick_inline_PM2R : 43.04987, 43.09075, 43.13287
ltree_count_PM2R : 49.87400, 50.08509, 50.69292
count_inversions_NiklasB : 50.74591, 50.75012, 50.75551
merge_count_BM : 52.37284, 52.51491, 53.43003
solutionE_TimBabych : 373.67198, 377.03341, 377.42360
solution_python : 411.69178, 411.92691, 412.83856
Size = 655360, hi = 327680, 4 loops
perm_radixI_PM2R : 78.51927, 78.66327, 79.46325
perm_fenwick_PM2R : 90.64711, 90.80328, 91.76126
fenwick_inline_PM2R : 93.32482, 93.39086, 94.28880
count_inversions_NiklasB : 107.74393, 107.80036, 108.71443
ltree_count_PM2R : 109.11328, 109.23592, 110.18247
merge_count_BM : 111.05633, 111.07840, 112.05861
solutionE_TimBabych : 1830.46443, 1836.39960, 1849.53918
solution_python : 1911.03692, 1912.04484, 1914.69786
Solution One.Work well when there is a large amount of numbers
def countInversions(arr):
n = len(arr)
if n == 1:
return 0
n1 = n // 2
n2 = n - n1
arr1 = arr[:n1]
arr2 = arr[n1:]
# print(n1,'||',n1,'||',arr1,'||',arr2)
ans = countInversions(arr1) + countInversions(arr2)
print(ans)
i1 = 0
i2 = 0
for i in range(n):
# print(i1,n1,i2,n2)
if i1 < n1 and (i2 >= n2 or arr1[i1] <= arr2[i2]):
arr[i] = arr1[i1]
ans += i2
i1 += 1
elif i2 < n2:
arr[i] = arr2[i2]
i2 += 1
return ans
Solution Two.Simple solution.
def countInversions(arr):
count = 0
for i in range(len(arr)):
for j in range(i, len(arr)):
# print(arr[i:len(arr)])
if arr[i] > arr[j]:
print(arr[i], arr[j])
count += 1
print(count)
public static int mergeSort(int[] a, int p, int r)
{
int countInversion = 0;
if(p < r)
{
int q = (p + r)/2;
countInversion = mergeSort(a, p, q);
countInversion += mergeSort(a, q+1, r);
countInversion += merge(a, p, q, r);
}
return countInversion;
}
public static int merge(int[] a, int p, int q, int r)
{
//p=0, q=1, r=3
int countingInversion = 0;
int n1 = q-p+1;
int n2 = r-q;
int[] temp1 = new int[n1+1];
int[] temp2 = new int[n2+1];
for(int i=0; i<n1; i++) temp1[i] = a[p+i];
for(int i=0; i<n2; i++) temp2[i] = a[q+1+i];
temp1[n1] = Integer.MAX_VALUE;
temp2[n2] = Integer.MAX_VALUE;
int i = 0, j = 0;
for(int k=p; k<=r; k++)
{
if(temp1[i] <= temp2[j])
{
a[k] = temp1[i];
i++;
}
else
{
a[k] = temp2[j];
j++;
countingInversion=countingInversion+(n1-i);
}
}
return countingInversion;
}
public static void main(String[] args)
{
int[] a = {1, 20, 6, 4, 5};
int countInversion = mergeSort(a, 0, a.length-1);
System.out.println(countInversion);
}
Another Python solution, short one. Makes use of builtin bisect module, which provides functions to insert element into its place in sorted array and to find index of element in sorted array.
The idea is to store elements left of n-th in such array, which would allow us to easily find the number of them greater than n-th.
import bisect
def solution(A):
sorted_left = []
res = 0
for i in xrange(1, len(A)):
bisect.insort_left(sorted_left, A[i-1])
# i is also the length of sorted_left
res += (i - bisect.bisect(sorted_left, A[i]))
return res
Here is c++ solution
/**
*array sorting needed to verify if first arrays n'th element is greater than sencond arrays
*some element then all elements following n will do the same
*/
#include<stdio.h>
#include<iostream>
using namespace std;
int countInversions(int array[],int size);
int merge(int arr1[],int size1,int arr2[],int size2,int[]);
int main()
{
int array[] = {2, 4, 1, 3, 5};
int size = sizeof(array) / sizeof(array[0]);
int x = countInversions(array,size);
printf("number of inversions = %d",x);
}
int countInversions(int array[],int size)
{
if(size > 1 )
{
int mid = size / 2;
int count1 = countInversions(array,mid);
int count2 = countInversions(array+mid,size-mid);
int temp[size];
int count3 = merge(array,mid,array+mid,size-mid,temp);
for(int x =0;x<size ;x++)
{
array[x] = temp[x];
}
return count1 + count2 + count3;
}else{
return 0;
}
}
int merge(int arr1[],int size1,int arr2[],int size2,int temp[])
{
int count = 0;
int a = 0;
int b = 0;
int c = 0;
while(a < size1 && b < size2)
{
if(arr1[a] < arr2[b])
{
temp[c] = arr1[a];
c++;
a++;
}else{
temp[c] = arr2[b];
b++;
c++;
count = count + size1 -a;
}
}
while(a < size1)
{
temp[c] = arr1[a];
c++;a++;
}
while(b < size2)
{
temp[c] = arr2[b];
c++;b++;
}
return count;
}
So here is O(n log n) solution in java.
long merge(int[] arr, int[] left, int[] right) {
int i = 0, j = 0, count = 0;
while (i < left.length || j < right.length) {
if (i == left.length) {
arr[i+j] = right[j];
j++;
} else if (j == right.length) {
arr[i+j] = left[i];
i++;
} else if (left[i] <= right[j]) {
arr[i+j] = left[i];
i++;
} else {
arr[i+j] = right[j];
count += left.length-i;
j++;
}
}
return count;
}
long invCount(int[] arr) {
if (arr.length < 2)
return 0;
int m = (arr.length + 1) / 2;
int left[] = Arrays.copyOfRange(arr, 0, m);
int right[] = Arrays.copyOfRange(arr, m, arr.length);
return invCount(left) + invCount(right) + merge(arr, left, right);
}
This is almost normal merge sort, the whole magic is hidden in merge function. Note that while sorting algorithm remove inversions. While merging algorithm counts number of removed inversions (sorted out one might say).
The only moment when inversions are removed is when algorithm takes element from the right side of an array and merge it to the main array. The number of inversions removed by this operation is the number of elements left from the the left array to be merged. :)
Hope it's explanatory enough.