I have the following DataFrame:
daysago line_race rating rw wrating
line_date
2007
Another way of doing it. May not be the most efficient way as the code looks a bit more complex than the code mentioned in other answers, but still alternate way of doing the same thing.
df = df.drop(df[df['line_race']==0].index)
But for any future bypassers you could mention that df = df[df.line_race != 0]
doesn't do anything when trying to filter for None
/missing values.
Does work:
df = df[df.line_race != 0]
Doesn't do anything:
df = df[df.line_race != None]
Does work:
df = df[df.line_race.notnull()]
The best way to do this is with boolean masking:
In [56]: df
Out[56]:
line_date daysago line_race rating raw wrating
0 2007-03-31 62 11 56 1.000 56.000
1 2007-03-10 83 11 67 1.000 67.000
2 2007-02-10 111 9 66 1.000 66.000
3 2007-01-13 139 10 83 0.881 73.096
4 2006-12-23 160 10 88 0.793 69.787
5 2006-11-09 204 9 52 0.637 33.106
6 2006-10-22 222 8 66 0.582 38.408
7 2006-09-29 245 9 70 0.519 36.318
8 2006-09-16 258 11 68 0.486 33.063
9 2006-08-30 275 8 72 0.447 32.160
10 2006-02-11 475 5 65 0.165 10.698
11 2006-01-13 504 0 70 0.142 9.969
12 2006-01-02 515 0 64 0.135 8.627
13 2005-12-06 542 0 70 0.118 8.246
14 2005-11-29 549 0 70 0.114 7.963
15 2005-11-22 556 0 -1 0.110 -0.110
16 2005-11-01 577 0 -1 0.099 -0.099
17 2005-10-20 589 0 -1 0.093 -0.093
18 2005-09-27 612 0 -1 0.083 -0.083
19 2005-09-07 632 0 -1 0.075 -0.075
20 2005-06-12 719 0 69 0.049 3.360
21 2005-05-29 733 0 -1 0.045 -0.045
22 2005-05-02 760 0 -1 0.040 -0.040
23 2005-04-02 790 0 -1 0.034 -0.034
24 2005-03-13 810 0 -1 0.031 -0.031
25 2004-11-09 934 0 -1 0.017 -0.017
In [57]: df[df.line_race != 0]
Out[57]:
line_date daysago line_race rating raw wrating
0 2007-03-31 62 11 56 1.000 56.000
1 2007-03-10 83 11 67 1.000 67.000
2 2007-02-10 111 9 66 1.000 66.000
3 2007-01-13 139 10 83 0.881 73.096
4 2006-12-23 160 10 88 0.793 69.787
5 2006-11-09 204 9 52 0.637 33.106
6 2006-10-22 222 8 66 0.582 38.408
7 2006-09-29 245 9 70 0.519 36.318
8 2006-09-16 258 11 68 0.486 33.063
9 2006-08-30 275 8 72 0.447 32.160
10 2006-02-11 475 5 65 0.165 10.698
UPDATE: Now that pandas 0.13 is out, another way to do this is df.query('line_race != 0')
.
If you want to delete rows based on multiple values of the column, you could use:
df[(df.line_race != 0) & (df.line_race != 10)]
To drop all rows with values 0 and 10 for line_race
.
Though the previou answer are almost similar to what I am going to do, but using the index method does not require using another indexing method .loc(). It can be done in a similar but precise manner as
df.drop(df.index[df['line_race'] == 0], inplace = True)
The given answer is correct nontheless as someone above said you can use df.query('line_race != 0')
which depending on your problem is much faster. Highly recommend.