Collapse intersecting regions

后端 未结 2 896
别那么骄傲
别那么骄傲 2020-12-03 02:24

I am trying to find a way to collapse rows with intersecting ranges, denoted by \"start\" and \"stop\" columns, and record the collapsed values into new columns. For example

相关标签:
2条回答
  • 2020-12-03 02:37

    IRanges is a good candidate for such job. No need to use chrom variable.

    ir <- IRanges(my.df$start, my.df$stop)
    ## I create a new grouping variable Note the use of reduce here(performance issue)
    my.df$group2 <- subjectHits(findOverlaps(ir, reduce(ir)))
    # chrom name    start     stop group2
    # 1     1    a    70001    71200      2
    # 2     1    b    70203    80001      2
    # 3     1    c    70060    71051      2
    # 4    14    d    40004    42004      1
    # 5    16    e 50000872 50000890      3
    # 6    16    f 50000872 51000952      3
    

    The new group2 variable is the range indicator. Now using data.table I can't transform my data to the desired output:

    library(data.table)
    DT <- as.data.table(my.df)
    DT[, list(start=min(start),stop=max(stop),
             name=list(name),chrom=unique(chrom)),
                   by=group2]
    
    # group2    start     stop  name chrom
    # 1:      2    70001    80001 a,b,c     1
    # 2:      1    40004    42004     d    14
    # 3:      3 50000872 51000952   e,f    16
    

    PS: the collapsed variable name here is not string but a list of factor. This is more efficient and easier to access than a collapased character using paste for example.

    EDIT after OP clarification, I will create the group variable by chrom. I mean the Iranges code now is called for each chrom group. I slightly modify your data, to create group of intervals the same chromosome.

    my.df<- data.frame(chrom=c(1,1,1,1,14,16,16), 
                       name=c("a","b","c","d","e","f","g"),
                       start=as.numeric(c(0,3000,70203,70060, 40004, 50000872, 50000872)), 
                       stop=as.numeric(c(1,5000,80001,71051, 42004, 50000890, 51000952)))
    
    library(data.table)
    DT <- as.data.table(my.df)
    
    ## find interval for each chromsom
    DT[,group := { 
          ir <-  IRanges(start, stop);
           subjectHits(findOverlaps(ir, reduce(ir)))
          },by=chrom]
    
    ## Now I group by group and chrom 
    DT[, list(start=min(start),stop=max(stop),name=list(name),chrom=unique(chrom)),
       by=list(group,chrom)]
    
      group chrom    start     stop name chrom
    1:     1     1        0        1    a     1
    2:     2     1     3000     5000    b     1
    3:     3     1    70060    80001  c,d     1
    4:     1    14    40004    42004    e    14
    5:     1    16 50000872 51000952  f,g    16
    
    0 讨论(0)
  • 2020-12-03 02:53

    After sorting the data, you can easily test if an interval overlaps the previous one, and assign a label to each set of overlapping intervals. Once you have those labels, you can use ddply to aggregate the data.

    d <- data.frame(
      chrom = c(1,1,1,14,16,16), 
      name  = c("a","b","c","d","e","f"), 
      start = as.numeric(c(70001,70203,70060, 40004, 50000872, 50000872)), 
      stop  = as.numeric(c(71200,80001,71051, 42004, 50000890, 51000952))
    )
    
    # Make sure the data is sorted
    d <- d[ order(d$start), ]
    
    # Check if a record should be linked with the previous
    d$previous_stop <- c(NA, d$stop[-nrow(d)])
    d$previous_stop <- cummax(ifelse(is.na(d$previous_stop),0,d$previous_stop))
    d$new_group <- is.na(d$previous_stop) | d$start >= d$previous_stop
    
    # The number of the current group of records is the number of times we have switched to a new group
    d$group <- cumsum( d$new_group )
    
    # We can now aggregate the data
    library(plyr)
    ddply( 
      d, "group", summarize, 
      start=min(start), stop=max(stop), name=paste(name,collapse=",")
    )
    #   group    start     stop    name
    # 1     1        0    80001 a,d,c,b
    # 2     2 50000872 51000952     e,f
    

    But this ignores the chrom column: to account for it, you can do the same thing for each chromosome, separately.

    d <- d[ order(d$chrom, d$start), ]
    d <- ddply( d, "chrom", function(u) { 
      x <- c(NA, u$stop[-nrow(u)])
      y <- ifelse( is.na(x), 0, x )
      y <- cummax(y)
      y[ is.na(x) ] <- NA
      u$previous_stop <- y
      u
    } )
    d$new_group <- is.na(d$previous_stop) | d$start >= d$previous_stop
    d$group <- cumsum( d$new_group )
    ddply( 
      d, .(chrom,group), summarize, 
      start=min(start), stop=max(stop), name=paste(name,collapse=",")
    )
    #   chrom group    start     stop  name
    # 1     1     1        0    80001 a,c,b
    # 2    14     2    40004    42004     d
    # 3    16     3 50000872 51000952   e,f
    
    0 讨论(0)
提交回复
热议问题