The following takes about 30 seconds to run whereas I would expect it to be nearly instant. Is there a problem with my code?
x <- fibonacci(35);
fibonac
That just provided a nice opportunity to plug Rcpp which allows us to add C++ functions easily to R.
So after fixing your code slightly, and using the packages inline (to easily compile, load and link short code snippets as dynamically loadable functions) as well as rbenchmark to time and compare functions, we end up with a stunning 700-fold increase in performance:
R> print(res)
test replications elapsed relative user.self sys.self
2 fibRcpp(N) 1 0.092 1.000 0.10 0
1 fibR(N) 1 65.693 714.054 65.66 0
R>
Here we see elapsed times of 92 milliseonds versus 65 seconds, for a relative ratio of 714. But by now everybody else told you not to do this directly in R.... The code is below.
## inline to compile, load and link the C++ code
require(inline)
## we need a pure C/C++ function as the generated function
## will have a random identifier at the C++ level preventing
## us from direct recursive calls
incltxt <- '
int fibonacci(const int x) {
if (x == 0) return(0);
if (x == 1) return(1);
return (fibonacci(x - 1)) + fibonacci(x - 2);
}'
## now use the snipped above as well as one argument conversion
## in as well as out to provide Fibonacci numbers via C++
fibRcpp <- cxxfunction(signature(xs="int"),
plugin="Rcpp",
incl=incltxt,
body='
int x = Rcpp::as<int>(xs);
return Rcpp::wrap( fibonacci(x) );
')
## for comparison, the original (but repaired with 0/1 offsets)
fibR <- function(seq) {
if (seq == 0) return(0);
if (seq == 1) return(1);
return (fibR(seq - 1) + fibR(seq - 2));
}
## load rbenchmark to compare
library(rbenchmark)
N <- 35 ## same parameter as original post
res <- benchmark(fibR(N),
fibRcpp(N),
columns=c("test", "replications", "elapsed",
"relative", "user.self", "sys.self"),
order="relative",
replications=1)
print(res) ## show result
And for completeness, the functions also produce the correct output:
R> sapply(1:10, fibR)
[1] 1 1 2 3 5 8 13 21 34 55
R> sapply(1:10, fibRcpp)
[1] 1 1 2 3 5 8 13 21 34 55
R>
A recursive implementation with linear cost:
fib3 <- function(n){
fib <- function(n, fibm1, fibm2){
if(n==1){return(fibm2)}
if(n==2){return(fibm1)}
if(n >2){
fib(n-1, fibm1+fibm2, fibm1)
}
}
fib(n, 1, 0)
}
Comparing with the recursive solution with exponential cost:
> system.time(fibonacci(35))
usuário sistema decorrido
14.629 0.017 14.644
> system.time(fib3(35))
usuário sistema decorrido
0.001 0.000 0.000
This solution can be vectorized with ifelse
:
fib4 <- function(n){
fib <- function(n, fibm1, fibm2){
ifelse(n<=1, fibm2,
ifelse(n==2, fibm1,
Recall(n-1, fibm1+fibm2, fibm1)
))
}
fib(n, 1, 0)
}
fib4(1:30)
## [1] 0 1 1 2 3 5 8
## [8] 13 21 34 55 89 144 233
## [15] 377 610 987 1597 2584 4181 6765
## [22] 10946 17711 28657 46368 75025 121393 196418
## [29] 317811 514229
The only changes required are changing ==
to <=
for the n==1
case, and changing each if
block to the equivalent ifelse
.
:-) because you use exponential algorithm!!! So for fibonacci number N it has to call the function 2^N times, which 2^35, which is heck of a number.... :-)
Use linear algorithm:
fib = function (x)
{
if (x == 0)
return (0)
n1 = 0
n2 = 1
for (i in 1:(x-1)) {
sum = n1 + n2
n1 = n2
n2 = sum
}
n2
}
Sorry, edit: the complexity of the exponential recursive algorithm is not O(2^N) but O(fib(N)), as Martinho Fernandes greatly joked :-) Really a good note :-)
Patrick Burns gives an example in R Inferno of one way to do memoization in R with local()
and <<-
. In fact, it's a fibonacci:
fibonacci <- local({
memo <- c(1, 1, rep(NA, 100))
f <- function(x) {
if(x == 0) return(0)
if(x < 0) return(NA)
if(x > length(memo))
stop("’x’ too big for implementation")
if(!is.na(memo[x])) return(memo[x])
ans <- f(x-2) + f(x-1)
memo[x] <<- ans
ans
}
})
Because you are using one of the worst algorithms in the world!
Complexity of which is O(fibonacci(n))
= O((golden ratio)^n)
and golden ratio is 1.6180339887498948482…
Because the memoise package was already mentioned here is a reference implementation:
fib <- function(n) {
if (n < 2) return(1)
fib(n - 2) + fib(n - 1)
}
system.time(fib(35))
## user system elapsed
## 36.10 0.02 36.16
library(memoise)
fib2 <- memoise(function(n) {
if (n < 2) return(1)
fib2(n - 2) + fib2(n - 1)
})
system.time(fib2(35))
## user system elapsed
## 0 0 0
Source: Wickham, H.: Advanced R, p. 238.
In general memoization in computer science means that you save the results of a function so that when you call it again with the same arguments it returns the saved value.