Note: Version 2, below, uses the Sieve of Eratosthenes. There are several answers that helped with what I originally asked. I have chosen the Sieve of Era
Not sure if this will suite your situation but you can take a look at my approach. I used mine using Sieve of Eratosthenes.
public static List<Integer> sieves(int n) {
Map<Integer,Boolean> numbers = new LinkedHashMap<>();
List<Integer> primes = new ArrayList<>();
//First generate a list of integers from 2 to 30
for(int i=2; i<n;i++){
numbers.put(i,true);
}
for(int i : numbers.keySet()){
/**
* The first number in the list is 2; cross out every 2nd number in the list after 2 by
* counting up from 2 in increments of 2 (these will be all the multiples of 2 in the list):
*
* The next number in the list after 2 is 3; cross out every 3rd number in the list after 3 by
* counting up from 3 in increments of 3 (these will be all the multiples of 3 in the list):
* The next number not yet crossed out in the list after 5 is 7; the next step would be to cross out every
* 7th number in the list after 7, but they are all already crossed out at this point,
* as these numbers (14, 21, 28) are also multiples of smaller primes because 7 × 7 is greater than 30.
* The numbers not crossed out at this point in the list are all the prime numbers below 30:
*/
if(numbers.get(i)){
for(int j = i+i; j<n; j+=i) {
numbers.put(j,false);
}
}
}
for(int i : numbers.keySet()){
for(int j = i+i; j<n && numbers.get(i); j+=i) {
numbers.put(j,false);
}
}
for(int i : numbers.keySet()){
if(numbers.get(i)) {
primes.add(i);
}
}
return primes;
}
Added comment for each steps that has been illustrated in wikipedia
Algo using Sieve of Eratosthenes
public static List<Integer> findPrimes(int limit) {
List<Integer> list = new ArrayList<>();
boolean [] isComposite = new boolean [limit + 1]; // limit + 1 because we won't use '0'th index of the array
isComposite[1] = true;
// Mark all composite numbers
for (int i = 2; i <= limit; i++) {
if (!isComposite[i]) {
// 'i' is a prime number
list.add(i);
int multiple = 2;
while (i * multiple <= limit) {
isComposite [i * multiple] = true;
multiple++;
}
}
}
return list;
}
Image depicting the above algo (Grey color cells represent prime number. Since we consider all numbers as prime numbers intially, the whole is grid is grey initially.)
Image Source: WikiMedia
I have done using HashMap and found it very simple
import java.util.HashMap;
import java.util.Map;
/*Using Algorithms such as sieve of Eratosthanas */
public class PrimeNumber {
public static void main(String[] args) {
int prime = 15;
HashMap<Integer, Integer> hashMap = new HashMap<Integer, Integer>();
hashMap.put(0, 0);
hashMap.put(1, 0);
for (int i = 2; i <= prime; i++) {
hashMap.put(i, 1);// Assuming all numbers are prime
}
printPrimeNumberEratoshanas(hashMap, prime);
}
private static void printPrimeNumberEratoshanas(HashMap<Integer, Integer> hashMap, int prime) {
System.out.println("Printing prime numbers upto" + prime + ".....");
for (Map.Entry<Integer, Integer> entry : hashMap.entrySet()) {
if (entry.getValue().equals(1)) {
System.out.println(entry.getKey());
for (int j = entry.getKey(); j < prime; j++) {
for (int k = j; k * j <= prime; k++) {
hashMap.put(j * k, 0);
}
}
}
}
}
}
Think this is effective
As Paul Tomblin points out, there are better algorithms.
But keeping with what you have, and assuming an object per result is too big:
You are only ever appending to the array. So, use a relatively small int[] array. When it's full use append it to a List and create a replacement. At the end copy it into a correctly sized array.
Alternatively, guess the size of the int[] array. If it is too small, replace by an int[] with a size a fraction larger than the current array size. The performance overhead of this will remain proportional to the size. (This was discussed briefly in a recent stackoverflow podcast.)
public static void primes(int n) {
boolean[] lista = new boolean[n+1];
for (int i=2;i<lista.length;i++) {
if (lista[i]==false) {
System.out.print(i + " ");
}
for (int j=i+i;j<lista.length;j+=i) {
lista[j]=true;
}
}
}
Your method of finding primes, by comparing every single element of the array with every possible factor is hideously inefficient. You can improve it immensely by doing a Sieve of Eratosthenes over the entire array at once. Besides doing far fewer comparisons, it also uses addition rather than division. Division is way slower.