I have a dataframe df
df = pd.DataFrame(np.arange(20).reshape(10, -1),
[[\'a\', \'a\', \'a\', \'a\', \'b\', \'b\', \'b\', \'c\
This could be on of the easy solution.
df.groupby(level = 0, as_index= False).nth([0,-1])
X Y
a a 0 1
d 6 7
b e 8 9
g 12 13
c h 14 15
i 16 17
d j 18 19
Hope this helps. (Y)
Please try this:
For last value: df.groupby('Column_name').nth(-1)
,
For first value: df.groupby('Column_name').nth(0)
def first_last(df):
return df.ix[[0, -1]]
df.groupby(level=0, group_keys=False).apply(first_last)
idx = df.index.to_series().groupby(level=0).agg(['first', 'last']).stack()
df.loc[idx]
I also abused the agg
function. The code below works, but is far uglier.
df.reset_index(1).groupby(level=0).agg(['first', 'last']).stack() \
.set_index('level_1', append=True).reset_index(1, drop=True) \
.rename_axis([None, None])
per @unutbu: agg(['first', 'last'])
take the firs non-na values.
I interpreted this as, it must then be necessary to run this column by column. Further, forcing index level=1 to align may not even make sense.
Let's include another test
df = pd.DataFrame(np.arange(20).reshape(10, -1),
[list('aaaabbbccd'),
list('abcdefghij')],
list('XY'))
df.loc[tuple('aa'), 'X'] = np.nan
def first_last(df):
return df.ix[[0, -1]]
df.groupby(level=0, group_keys=False).apply(first_last)
df.reset_index(1).groupby(level=0).agg(['first', 'last']).stack() \
.set_index('level_1', append=True).reset_index(1, drop=True) \
.rename_axis([None, None])
Sure enough! This second solution is taking the first valid value in column X. It is now nonsensical to have forced that value to align with the index a.