Finding the minimum number of swaps to convert one string to another, where the strings may have repeated characters

后端 未结 4 1305
栀梦
栀梦 2020-12-02 21:03

I was looking through a programming question, when the following question suddenly seemed related.

How do you convert a string to another string using as few swaps a

相关标签:
4条回答
  • 2020-12-02 21:27

    Do an A* search (see http://en.wikipedia.org/wiki/A-star_search_algorithm for an explanation) for the shortest path through the graph of equivalent strings from one string to the other. Use the Levenshtein distance / 2 as your cost heuristic.

    0 讨论(0)
  • 2020-12-02 21:34

    You can construct the "difference" strings S and S', i.e. a string which contains the characters at the differing positions of the two strings, e.g. for acbacb and abcabc it will be cbcb and bcbc. Let us say this contains n characters.

    You can now construct a "permutation graph" G which will have n nodes and an edge from i to j if S[i] == S'[j]. In the case of all unique characters, it is easy to see that the required number of swaps will be (n - number of cycles in G), which can be found out in O(n) time.

    However, in the case where there are any number of duplicate characters, this reduces to the problem of finding out the largest number of cycles in a directed graph, which, I think, is NP-hard, (e.g. check out: http://www.math.ucsd.edu/~jverstra/dcig.pdf ).

    In that paper a few greedy algorithms are pointed out, one of which is particularly simple:

    1. At each step, find the minimum length cycle in the graph (e.g. Find cycle of shortest length in a directed graph with positive weights )
    2. Delete it
    3. Repeat until all vertexes have not been covered.

    However, there may be efficient algorithms utilizing the properties of your case (the only one I can think of is that your graphs will be K-partite, where K is the number of unique characters in S). Good luck!

    Edit: Please refer to David's answer for a fuller and correct explanation of the problem.

    0 讨论(0)
  • 2020-12-02 21:37

    This is an expanded and corrected version of Subhasis's answer.

    Formally, the problem is, given a n-letter alphabet V and two m-letter words, x and y, for which there exists a permutation p such that p(x) = y, determine the least number of swaps (permutations that fix all but two elements) whose composition q satisfies q(x) = y. Assuming that n-letter words are maps from the set {1, ..., m} to V and that p and q are permutations on {1, ..., m}, the action p(x) is defined as the composition p followed by x.

    The least number of swaps whose composition is p can be expressed in terms of the cycle decomposition of p. When j1, ..., jk are pairwise distinct in {1, ..., m}, the cycle (j1 ... jk) is a permutation that maps ji to ji + 1 for i in {1, ..., k - 1}, maps jk to j1, and maps every other element to itself. The permutation p is the composition of every distinct cycle (j p(j) p(p(j)) ... j'), where j is arbitrary and p(j') = j. The order of composition does not matter, since each element appears in exactly one of the composed cycles. A k-element cycle (j1 ... jk) can be written as the product (j1 jk) (j1 jk - 1) ... (j1 j2) of k - 1 cycles. In general, every permutation can be written as a composition of m swaps minus the number of cycles comprising its cycle decomposition. A straightforward induction proof shows that this is optimal.

    Now we get to the heart of Subhasis's answer. Instances of the asker's problem correspond one-to-one with Eulerian (for every vertex, in-degree equals out-degree) digraphs G with vertices V and m arcs labeled 1, ..., m. For j in {1, ..., n}, the arc labeled j goes from y(j) to x(j). The problem in terms of G is to determine how many parts a partition of the arcs of G into directed cycles can have. (Since G is Eulerian, such a partition always exists.) This is because the permutations q such that q(x) = y are in one-to-one correspondence with the partitions, as follows. For each cycle (j1 ... jk) of q, there is a part whose directed cycle is comprised of the arcs labeled j1, ..., jk.

    The problem with Subhasis's NP-hardness reduction is that arc-disjoint cycle packing on Eulerian digraphs is a special case of arc-disjoint cycle packing on general digraphs, so an NP-hardness result for the latter has no direct implications for the complexity status of the former. In very recent work (see the citation below), however, it has been shown that, indeed, even the Eulerian special case is NP-hard. Thus, by the correspondence above, the asker's problem is as well.

    As Subhasis hints, this problem can be solved in polynomial time when n, the size of the alphabet, is fixed (fixed-parameter tractable). Since there are O(n!) distinguishable cycles when the arcs are unlabeled, we can use dynamic programming on a state space of size O(mn), the number of distinguishable subgraphs. In practice, that might be sufficient for (let's say) a binary alphabet, but if I were to try to try to solve this problem exactly on instances with large alphabets, then I likely would try branch and bound, obtaining bounds by using linear programming with column generation to pack cycles fractionally.

    @article{DBLP:journals/corr/GutinJSW14,
      author    = {Gregory Gutin and
                   Mark Jones and
                   Bin Sheng and
                   Magnus Wahlstr{\"o}m},
      title     = {Parameterized Directed \$k\$-Chinese Postman Problem and \$k\$
                   Arc-Disjoint Cycles Problem on Euler Digraphs},
      journal   = {CoRR},
      volume    = {abs/1402.2137},
      year      = {2014},
      ee        = {http://arxiv.org/abs/1402.2137},
      bibsource = {DBLP, http://dblp.uni-trier.de}
    }
    
    0 讨论(0)
  • 2020-12-02 21:40

    Hash Map data structure (that allows duplicates) is suitable for solving the problem.

    Let the string be s1 and s2. The algorithm iterates through both the string and whenever a mismatch is found the algorithm maps the character of s1 to s2 i.e char of s1 as key and char of s2 as value is inserted in Hash Map wherever mismatch is occurred.

    After this initialize the result as zero.

    The next step is while the Hash Map is not empty do following:

    1. For any key k find its value v.
    2. Now use value v as the key to lookup in the Hash Map to find value if the found value is equal to k then increment the result by 1 and remove both the keys k and v from the Hash Map.
    3. If the found value is not equal to k then only remove key k from the Hash Map and increment the result.

    result holds your desired output.

    0 讨论(0)
提交回复
热议问题