Apparently xrange is faster but I have no idea why it\'s faster (and no proof besides the anecdotal so far that it is faster) or what besides that is different about
When testing range against xrange in a loop (I know I should use timeit, but this was swiftly hacked up from memory using a simple list comprehension example) I found the following:
import time
for x in range(1, 10):
t = time.time()
[v*10 for v in range(1, 10000)]
print "range: %.4f" % ((time.time()-t)*100)
t = time.time()
[v*10 for v in xrange(1, 10000)]
print "xrange: %.4f" % ((time.time()-t)*100)
which gives:
$python range_tests.py
range: 0.4273
xrange: 0.3733
range: 0.3881
xrange: 0.3507
range: 0.3712
xrange: 0.3565
range: 0.4031
xrange: 0.3558
range: 0.3714
xrange: 0.3520
range: 0.3834
xrange: 0.3546
range: 0.3717
xrange: 0.3511
range: 0.3745
xrange: 0.3523
range: 0.3858
xrange: 0.3997 <- garbage collection?
Or, using xrange in the for loop:
range: 0.4172
xrange: 0.3701
range: 0.3840
xrange: 0.3547
range: 0.3830
xrange: 0.3862 <- garbage collection?
range: 0.4019
xrange: 0.3532
range: 0.3738
xrange: 0.3726
range: 0.3762
xrange: 0.3533
range: 0.3710
xrange: 0.3509
range: 0.3738
xrange: 0.3512
range: 0.3703
xrange: 0.3509
Is my snippet testing properly? Any comments on the slower instance of xrange? Or a better example :-)
range generates the entire list and returns it. xrange does not -- it generates the numbers in the list on demand.
On a requirement for scanning/printing of 0-N items , range and xrange works as follows.
range() - creates a new list in the memory and takes the whole 0 to N items(totally N+1) and prints them. xrange() - creates a iterator instance that scans through the items and keeps only the current encountered item into the memory , hence utilising same amount of memory all the time.
In case the required element is somewhat at the beginning of the list only then it saves a good amount of time and memory.
Do spend some time with the Library Reference. The more familiar you are with it, the faster you can find answers to questions like this. Especially important are the first few chapters about builtin objects and types.
The advantage of the xrange type is that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There are no consistent performance advantages.
Another way to find quick information about a Python construct is the docstring and the help-function:
print xrange.__doc__ # def doc(x): print x.__doc__ is super useful
help(xrange)
What?
range
returns a static list at runtime.
xrange
returns an object
(which acts like a generator, although it's certainly not one) from which values are generated as and when required.
When to use which?
xrange
if you want to generate a list for a gigantic range, say 1 billion, especially when you have a "memory sensitive system" like a cell phone.range
if you want to iterate over the list several times.PS: Python 3.x's range
function == Python 2.x's xrange
function.
From the help docs.
Python 2.7.12
>>> print range.__doc__
range(stop) -> list of integers
range(start, stop[, step]) -> list of integers
Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults to 0.
When step is given, it specifies the increment (or decrement).
For example, range(4) returns [0, 1, 2, 3]. The end point is omitted!
These are exactly the valid indices for a list of 4 elements.
>>> print xrange.__doc__
xrange(stop) -> xrange object
xrange(start, stop[, step]) -> xrange object
Like range(), but instead of returning a list, returns an object that
generates the numbers in the range on demand. For looping, this is
slightly faster than range() and more memory efficient.
Python 3.5.2
>>> print(range.__doc__)
range(stop) -> range object
range(start, stop[, step]) -> range object
Return an object that produces a sequence of integers from start (inclusive)
to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1.
start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3.
These are exactly the valid indices for a list of 4 elements.
When step is given, it specifies the increment (or decrement).
>>> print(xrange.__doc__)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'xrange' is not defined
Difference is apparent. In Python 2.x, range
returns a list, xrange
returns an xrange object which is iterable.
In Python 3.x, range
becomes xrange
of Python 2.x, and xrange
is removed.