How can I generate a random 8 character alphanumeric string in C#?
Just some performance comparisons of the various answers in this thread:
// what's available
public static string possibleChars = "abcdefghijklmnopqrstuvwxyz";
// optimized (?) what's available
public static char[] possibleCharsArray = possibleChars.ToCharArray();
// optimized (precalculated) count
public static int possibleCharsAvailable = possibleChars.Length;
// shared randomization thingy
public static Random random = new Random();
// http://stackoverflow.com/a/1344242/1037948
public string LinqIsTheNewBlack(int num) {
return new string(
Enumerable.Repeat(possibleCharsArray, num)
.Select(s => s[random.Next(s.Length)])
.ToArray());
}
// http://stackoverflow.com/a/1344258/1037948
public string ForLoop(int num) {
var result = new char[num];
while(num-- > 0) {
result[num] = possibleCharsArray[random.Next(possibleCharsAvailable)];
}
return new string(result);
}
public string ForLoopNonOptimized(int num) {
var result = new char[num];
while(num-- > 0) {
result[num] = possibleChars[random.Next(possibleChars.Length)];
}
return new string(result);
}
public string Repeat(int num) {
return new string(new char[num].Select(o => possibleCharsArray[random.Next(possibleCharsAvailable)]).ToArray());
}
// http://stackoverflow.com/a/1518495/1037948
public string GenerateRandomString(int num) {
var rBytes = new byte[num];
random.NextBytes(rBytes);
var rName = new char[num];
while(num-- > 0)
rName[num] = possibleCharsArray[rBytes[num] % possibleCharsAvailable];
return new string(rName);
}
//SecureFastRandom - or SolidSwiftRandom
static string GenerateRandomString(int Length) //Configurable output string length
{
byte[] rBytes = new byte[Length];
char[] rName = new char[Length];
SolidSwiftRandom.GetNextBytesWithMax(rBytes, biasZone);
for (var i = 0; i < Length; i++)
{
rName[i] = charSet[rBytes[i] % charSet.Length];
}
return new string(rName);
}
Tested in LinqPad. For string size of 10, generates:
- from Linq = chdgmevhcy [10]
- from Loop = gtnoaryhxr [10]
- from Select = rsndbztyby [10]
- from GenerateRandomString = owyefjjakj [10]
- from SecureFastRandom = VzougLYHYP [10]
- from SecureFastRandom-NoCache = oVQXNGmO1S [10]
And the performance numbers tend to vary slightly, very occasionally NonOptimized
is actually faster, and sometimes ForLoop
and GenerateRandomString
switch who's in the lead.
- LinqIsTheNewBlack (10000x) = 96762 ticks elapsed (9.6762 ms)
- ForLoop (10000x) = 28970 ticks elapsed (2.897 ms)
- ForLoopNonOptimized (10000x) = 33336 ticks elapsed (3.3336 ms)
- Repeat (10000x) = 78547 ticks elapsed (7.8547 ms)
- GenerateRandomString (10000x) = 27416 ticks elapsed (2.7416 ms)
- SecureFastRandom (10000x) = 13176 ticks elapsed (5ms) lowest [Different machine]
- SecureFastRandom-NoCache (10000x) = 39541 ticks elapsed (17ms) lowest [Different machine]
We also use custom string random but we implemented is as a string's helper so it provides some flexibility...
public static string Random(this string chars, int length = 8)
{
var randomString = new StringBuilder();
var random = new Random();
for (int i = 0; i < length; i++)
randomString.Append(chars[random.Next(chars.Length)]);
return randomString.ToString();
}
Usage
var random = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".Random();
or
var random = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789".Random(16);
One line of code Membership.GeneratePassword() does the trick :)
Here is a demo for the same.
After reviewing the other answers and considering CodeInChaos' comments, along with CodeInChaos still biased (although less) answer, I thought a final ultimate cut and paste solution was needed. So while updating my answer I decided to go all out.
For an up to date version of this code, please visit the new Hg repository on Bitbucket: https://bitbucket.org/merarischroeder/secureswiftrandom. I recommend you copy and paste the code from: https://bitbucket.org/merarischroeder/secureswiftrandom/src/6c14b874f34a3f6576b0213379ecdf0ffc7496ea/Code/Alivate.SolidSwiftRandom/SolidSwiftRandom.cs?at=default&fileviewer=file-view-default (make sure you click the Raw button to make it easier to copy and make sure you have the latest version, I think this link goes to a specific version of the code, not the latest).
Updated notes:
End solution to question:
static char[] charSet = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".ToCharArray();
static int byteSize = 256; //Labelling convenience
static int biasZone = byteSize - (byteSize % charSet.Length);
public string GenerateRandomString(int Length) //Configurable output string length
{
byte[] rBytes = new byte[Length]; //Do as much before and after lock as possible
char[] rName = new char[Length];
SecureFastRandom.GetNextBytesMax(rBytes, biasZone);
for (var i = 0; i < Length; i++)
{
rName[i] = charSet[rBytes[i] % charSet.Length];
}
return new string(rName);
}
But you need my new (untested) class:
/// <summary>
/// My benchmarking showed that for RNGCryptoServiceProvider:
/// 1. There is negligable benefit of sharing RNGCryptoServiceProvider object reference
/// 2. Initial GetBytes takes 2ms, and an initial read of 1MB takes 3ms (starting to rise, but still negligable)
/// 2. Cached is ~1000x faster for single byte at a time - taking 9ms over 1MB vs 989ms for uncached
/// </summary>
class SecureFastRandom
{
static byte[] byteCache = new byte[1000000]; //My benchmark showed that an initial read takes 2ms, and an initial read of this size takes 3ms (starting to raise)
static int lastPosition = 0;
static int remaining = 0;
/// <summary>
/// Static direct uncached access to the RNGCryptoServiceProvider GetBytes function
/// </summary>
/// <param name="buffer"></param>
public static void DirectGetBytes(byte[] buffer)
{
using (var r = new RNGCryptoServiceProvider())
{
r.GetBytes(buffer);
}
}
/// <summary>
/// Main expected method to be called by user. Underlying random data is cached from RNGCryptoServiceProvider for best performance
/// </summary>
/// <param name="buffer"></param>
public static void GetBytes(byte[] buffer)
{
if (buffer.Length > byteCache.Length)
{
DirectGetBytes(buffer);
return;
}
lock (byteCache)
{
if (buffer.Length > remaining)
{
DirectGetBytes(byteCache);
lastPosition = 0;
remaining = byteCache.Length;
}
Buffer.BlockCopy(byteCache, lastPosition, buffer, 0, buffer.Length);
lastPosition += buffer.Length;
remaining -= buffer.Length;
}
}
/// <summary>
/// Return a single byte from the cache of random data.
/// </summary>
/// <returns></returns>
public static byte GetByte()
{
lock (byteCache)
{
return UnsafeGetByte();
}
}
/// <summary>
/// Shared with public GetByte and GetBytesWithMax, and not locked to reduce lock/unlocking in loops. Must be called within lock of byteCache.
/// </summary>
/// <returns></returns>
static byte UnsafeGetByte()
{
if (1 > remaining)
{
DirectGetBytes(byteCache);
lastPosition = 0;
remaining = byteCache.Length;
}
lastPosition++;
remaining--;
return byteCache[lastPosition - 1];
}
/// <summary>
/// Rejects bytes which are equal to or greater than max. This is useful for ensuring there is no bias when you are modulating with a non power of 2 number.
/// </summary>
/// <param name="buffer"></param>
/// <param name="max"></param>
public static void GetBytesWithMax(byte[] buffer, byte max)
{
if (buffer.Length > byteCache.Length / 2) //No point caching for larger sizes
{
DirectGetBytes(buffer);
lock (byteCache)
{
UnsafeCheckBytesMax(buffer, max);
}
}
else
{
lock (byteCache)
{
if (buffer.Length > remaining) //Recache if not enough remaining, discarding remaining - too much work to join two blocks
DirectGetBytes(byteCache);
Buffer.BlockCopy(byteCache, lastPosition, buffer, 0, buffer.Length);
lastPosition += buffer.Length;
remaining -= buffer.Length;
UnsafeCheckBytesMax(buffer, max);
}
}
}
/// <summary>
/// Checks buffer for bytes equal and above max. Must be called within lock of byteCache.
/// </summary>
/// <param name="buffer"></param>
/// <param name="max"></param>
static void UnsafeCheckBytesMax(byte[] buffer, byte max)
{
for (int i = 0; i < buffer.Length; i++)
{
while (buffer[i] >= max)
buffer[i] = UnsafeGetByte(); //Replace all bytes which are equal or above max
}
}
}
For history - my older solution for this answer, used Random object:
private static char[] charSet =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789".ToCharArray();
static rGen = new Random(); //Must share, because the clock seed only has Ticks (~10ms) resolution, yet lock has only 20-50ns delay.
static int byteSize = 256; //Labelling convenience
static int biasZone = byteSize - (byteSize % charSet.Length);
static bool SlightlyMoreSecurityNeeded = true; //Configuration - needs to be true, if more security is desired and if charSet.Length is not divisible by 2^X.
public string GenerateRandomString(int Length) //Configurable output string length
{
byte[] rBytes = new byte[Length]; //Do as much before and after lock as possible
char[] rName = new char[Length];
lock (rGen) //~20-50ns
{
rGen.NextBytes(rBytes);
for (int i = 0; i < Length; i++)
{
while (SlightlyMoreSecurityNeeded && rBytes[i] >= biasZone) //Secure against 1/5 increased bias of index[0-7] values against others. Note: Must exclude where it == biasZone (that is >=), otherwise there's still a bias on index 0.
rBytes[i] = rGen.NextByte();
rName[i] = charSet[rBytes[i] % charSet.Length];
}
}
return new string(rName);
}
Performance:
Also check out:
These links are another approach. Buffering could be added to this new code base, but most important was exploring different approaches to removing bias, and benchmarking the speeds and pros/cons.
Try to combine two parts: unique (sequence, counter or date ) and random
public class RandomStringGenerator
{
public static string Gen()
{
return ConvertToBase(DateTime.UtcNow.ToFileTimeUtc()) + GenRandomStrings(5); //keep length fixed at least of one part
}
private static string GenRandomStrings(int strLen)
{
var result = string.Empty;
using (var gen = new RNGCryptoServiceProvider())
{
var data = new byte[1];
while (result.Length < strLen)
{
gen.GetNonZeroBytes(data);
int code = data[0];
if (code > 48 && code < 57 || // 0-9
code > 65 && code < 90 || // A-Z
code > 97 && code < 122 // a-z
)
{
result += Convert.ToChar(code);
}
}
return result;
}
}
private static string ConvertToBase(long num, int nbase = 36)
{
const string chars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; //if you wish to make the algorithm more secure - change order of letter here
// check if we can convert to another base
if (nbase < 2 || nbase > chars.Length)
return null;
int r;
var newNumber = string.Empty;
// in r we have the offset of the char that was converted to the new base
while (num >= nbase)
{
r = (int)(num % nbase);
newNumber = chars[r] + newNumber;
num = num / nbase;
}
// the last number to convert
newNumber = chars[(int)num] + newNumber;
return newNumber;
}
}
Tests:
[Test]
public void Generator_Should_BeUnigue1()
{
//Given
var loop = Enumerable.Range(0, 1000);
//When
var str = loop.Select(x=> RandomStringGenerator.Gen());
//Then
var distinct = str.Distinct();
Assert.AreEqual(loop.Count(),distinct.Count()); // Or Assert.IsTrue(distinct.Count() < 0.95 * loop.Count())
}
Here is a variant of Eric J's solution, i.e. cryptographically sound, for WinRT (Windows Store App):
public static string GenerateRandomString(int length)
{
var chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
var result = new StringBuilder(length);
for (int i = 0; i < length; ++i)
{
result.Append(CryptographicBuffer.GenerateRandomNumber() % chars.Length);
}
return result.ToString();
}
If performance matters (especially when length is high):
public static string GenerateRandomString(int length)
{
var chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
var result = new System.Text.StringBuilder(length);
var bytes = CryptographicBuffer.GenerateRandom((uint)length * 4).ToArray();
for (int i = 0; i < bytes.Length; i += 4)
{
result.Append(BitConverter.ToUInt32(bytes, i) % chars.Length);
}
return result.ToString();
}