What is the most efficient way to rotate a list in python? Right now I have something like this:
>>> def rotate(l, n):
... return l[n:] + l[:n]
Just some notes on timing:
If you're starting with a list, l.append(l.pop(0))
is the fastest method you can use. This can be shown with time complexity alone:
So if you are starting with deque
objects, you can deque.rotate()
at the cost of O(k). But, if the starting point is a list, the time complexity of using deque.rotate()
is O(n). l.append(l.pop(0)
is faster at O(1).
Just for the sake of illustration, here are some sample timings on 1M iterations:
Methods which require type conversion:
deque.rotate
with deque object: 0.12380790710449219 seconds (fastest)deque.rotate
with type conversion: 6.853878974914551 secondsnp.roll
with nparray: 6.0491721630096436 secondsnp.roll
with type conversion: 27.558452129364014 secondsList methods mentioned here:
l.append(l.pop(0))
: 0.32483696937561035 seconds (fastest)shiftInPlace
": 4.819645881652832 secondsTiming code used is below.
Showing that creating deques from lists is O(n):
from collections import deque
import big_o
def create_deque_from_list(l):
return deque(l)
best, others = big_o.big_o(create_deque_from_list, lambda n: big_o.datagen.integers(n, -100, 100))
print best
# --> Linear: time = -2.6E-05 + 1.8E-08*n
If you need to create deque objects:
1M iterations @ 6.853878974914551 seconds
setup_deque_rotate_with_create_deque = """
from collections import deque
import random
l = [random.random() for i in range(1000)]
"""
test_deque_rotate_with_create_deque = """
dl = deque(l)
dl.rotate(-1)
"""
timeit.timeit(test_deque_rotate_with_create_deque, setup_deque_rotate_with_create_deque)
If you already have deque objects:
1M iterations @ 0.12380790710449219 seconds
setup_deque_rotate_alone = """
from collections import deque
import random
l = [random.random() for i in range(1000)]
dl = deque(l)
"""
test_deque_rotate_alone= """
dl.rotate(-1)
"""
timeit.timeit(test_deque_rotate_alone, setup_deque_rotate_alone)
If you need to create nparrays
1M iterations @ 27.558452129364014 seconds
setup_np_roll_with_create_npa = """
import numpy as np
import random
l = [random.random() for i in range(1000)]
"""
test_np_roll_with_create_npa = """
np.roll(l,-1) # implicit conversion of l to np.nparray
"""
If you already have nparrays:
1M iterations @ 6.0491721630096436 seconds
setup_np_roll_alone = """
import numpy as np
import random
l = [random.random() for i in range(1000)]
npa = np.array(l)
"""
test_roll_alone = """
np.roll(npa,-1)
"""
timeit.timeit(test_roll_alone, setup_np_roll_alone)
Requires no type conversion
1M iterations @ 4.819645881652832 seconds
setup_shift_in_place="""
import random
l = [random.random() for i in range(1000)]
def shiftInPlace(l, n):
n = n % len(l)
head = l[:n]
l[:n] = []
l.extend(head)
return l
"""
test_shift_in_place="""
shiftInPlace(l,-1)
"""
timeit.timeit(test_shift_in_place, setup_shift_in_place)
Requires no type conversion
1M iterations @ 0.32483696937561035
setup_append_pop="""
import random
l = [random.random() for i in range(1000)]
"""
test_append_pop="""
l.append(l.pop(0))
"""
timeit.timeit(test_append_pop, setup_append_pop)
I take this cost model as a reference:
http://scripts.mit.edu/~6.006/fall07/wiki/index.php?title=Python_Cost_Model
Your method of slicing the list and concatenating two sub-lists are linear-time operations. I would suggest using pop, which is a constant-time operation, e.g.:
def shift(list, n):
for i in range(n)
temp = list.pop()
list.insert(0, temp)
If you just want to iterate over these sets of elements rather than construct a separate data structure, consider using iterators to construct a generator expression:
def shift(l,n):
return itertools.islice(itertools.cycle(l),n,n+len(l))
>>> list(shift([1,2,3],1))
[2, 3, 1]
Simplest way I can think of:
a.append(a.pop(0))
Another alternative:
def move(arr, n):
return [arr[(idx-n) % len(arr)] for idx,_ in enumerate(arr)]
A collections.deque is optimized for pulling and pushing on both ends. They even have a dedicated rotate()
method.
from collections import deque
items = deque([1, 2])
items.append(3) # deque == [1, 2, 3]
items.rotate(1) # The deque is now: [3, 1, 2]
items.rotate(-1) # Returns deque to original state: [1, 2, 3]
item = items.popleft() # deque == [2, 3]