I\'m taking a programming languages course and we\'re talking about the extern \"C\"
declaration.
How does this declaration work at a deeper level othe
extern "C" denotes that the enclosed code uses C-style linking and name mangling. C++ uses a more complex name mangling format. Here's an example:
http://en.wikipedia.org/wiki/Name_mangling
int example(int alpha, char beta);
in C: _example
in C++: __Z7exampleic
Update: As GManNickG notes in the comments, the pattern of name mangling is compiler dependent.
extern "C"
is used to ensure that the symbols following are not mangled (decorated).
Example:
Let's say we have the following code in a file called test.cpp
:
extern "C" {
int foo() {
return 1;
}
}
int bar() {
return 1;
}
If you run gcc -c test.cpp -o test.o
Take a look at the symbols names:
00000010 T _Z3barv
00000000 T foo
foo()
keeps its name.
It should be noted that extern "C"
also modifies the types of functions. It does not only modify things on lower levels:
extern "C" typedef void (*function_ptr_t)();
void foo();
int main() { function_ptr_t fptr = &foo; } // error!
The type of &foo
does not equal the type that the typedef designates (although the code is accepted by some, but not all compilers).
Let's look at a typical function that can compile in both C and C++:
int Add (int a, int b)
{
return a+b;
}
Now in C the function is called "_Add" internally. Whereas the C++ function is called something completely different internally using a system called name-mangling. Its basically a way to name a function so that the same function with different parameters has a different internal name.
So if Add() is defined in add.c, and you have the prototype in add.h you will get a problem if you try to include add.h in a C++ file. Because the C++ code is looking for a function with a name different to the one in add.c you will get a linker error. To get around that problem you must include add.c by this method:
extern "C"
{
#include "add.h"
}
Now the C++ code will link with _Add instead of the C++ name mangled version.
That's one of the uses of the expression. Bottom line, if you need to compile code that is strictly C in a C++ program (via an include statement or some other means) you need to wrap it with a extern "C" { ... } declaration.
In C++ the name/symbol of the functions are actually renamed to something else such that different classes/namespaces can have functions of same signatures. In C, the functions are all globally defined and no such customized renaming process is needed.
To make C++ and C talk with each other, "extern C" instructs the compiler not to use the C convention.
extern "C", is a keyword to declare a function with C bindings, because C compiler and C++ compiler will translate source into different form in object file:
For example, a code snippet is as follows:
int _cdecl func1(void) {return 0}
int _stdcall func2(int) {return 0}
int _fastcall func3(void) {return 1}
32-bit C compilers will translate the code in the form as follows:
_func1
_func2@4
@func3@4
in the cdecl, func1 will translate as '_name'
in the stdcall, func2 will translate as '_name@X'
in the fastcall, func2 will translate as '@name@X'
'X' means the how many bytes of the parameters in parameter list.
64-bit convention on Windows has no leading underscore
In C++, classes, templates, namespaces and operator overloading are introduced, since it is not allowed two functions with the same name, C++ compiler provide the type information in the symbol name,
for example, a code snippet is as follows:
int func(void) {return 1;}
int func(int) {return 0;}
int func_call(void) {int m=func(), n=func(0);}
C++ compiler will translate the code as follows:
int func_v(void) {return 1;}
int func_i(int) {return 0;}
int func_call(void) {int m=_func_v(), n=_func_i(0);}
'_v' and '_i' are type information of 'void' and 'int'