It\'s relatively simple using grid.arrange
in the gridExtra
package to arrange multiple plots in a matrix, but how can you arrange plots (the ones
You can use the same matrix interface as layout with grid.arrange
,
library(gridExtra)
library(grid)
gl <- lapply(1:9, function(ii) grobTree(rectGrob(), textGrob(ii)))
grid.arrange(grobs = gl, layout_matrix = rbind(c(1,1,1,2,3),
c(1,1,1,4,5),
c(6,7,8,9,9)))
and the same works for ggplots; note that NA can be used to indicate blank cells. The result is a gtable, compatible with ggsave()
.
gl <- replicate(9, ggplot(), FALSE)
grid.arrange(grobs = gl, layout_matrix = rbind(c(1,1,1,2,3),
c(1,1,1,4,5),
c(6,7,8,NA,9)))
An alternative with gtable
library(gtable)
gl <- lapply(1:9, function(ii) grobTree(textGrob(ii), rectGrob()))
# gl <- lapply(1:9, function(ii) ggplotGrob(qplot(1,1) + ggtitle(ii)))
gt <- gtable(widths=unit(rep(1,5), "null"),
heights=unit(rep(1,3), "null"))
gtable_add_grobs <- gtable_add_grob # alias
gt <- gtable_add_grobs(gt, gl,
l=c(1,4,5,4,5,1,2,3,4),
r=c(3,4,5,4,5,1,2,3,5),
t=c(1,1,1,2,2,3,3,3,3),
b=c(2,1,1,2,2,3,3,3,3))
grid.newpage()
grid.draw(gt)
You can use nested arrangeGrob
calls like this example:
library(ggplot2)
library(gridExtra)
p <- ggplot(data.frame(x=1, y=1), aes(x,y)) + geom_point()
grid.arrange(
arrangeGrob(
p,
arrangeGrob(p, p, nrow=2),
ncol=2 ,widths=c(2,1)),
arrangeGrob(p, p ,p ,ncol=3, widths=rep(1,3)),
nrow=2)
Edit:
gl <- lapply(1:9, function(ii) grobTree(rectGrob(),textGrob(ii)))
grid.arrange(
arrangeGrob(gl[[1]],
do.call(arrangeGrob, c(gl[2:5], ncol=2)),
nrow=1,
widths=3:2),
do.call(arrangeGrob, c(gl[6:9], nrow=1, list(widths=c(1,1,1,2)))),
nrow=2, heights=c(2,1))
I like the interface provided by the lay_out
function (formerly in the wq
package) . It takes arguments of the form list(plot, row(s), column(s))
. For your example:
lay_out(list(p1, 1:2, 1:3),
list(p2, 1, 4),
list(p3, 1, 5),
list(p4, 2, 4),
list(p5, 2, 5),
list(p6, 3, 1),
list(p7, 3, 2),
list(p8, 3, 3),
list(p9, 3, 4:5))
Which yields:
lay_out = function(...) {
x <- list(...)
n <- max(sapply(x, function(x) max(x[[2]])))
p <- max(sapply(x, function(x) max(x[[3]])))
grid::pushViewport(grid::viewport(layout = grid::grid.layout(n, p)))
for (i in seq_len(length(x))) {
print(x[[i]][[1]], vp = grid::viewport(layout.pos.row = x[[i]][[2]],
layout.pos.col = x[[i]][[3]]))
}
}
(Code sourced from a prior version of the wq
package, from the commit history on the unofficial Github CRAN mirror.)
I appreciate all the other answers, but Didzis Elferts's comment on the OP connected to the answer that I found easiest to implement.
library(ggplot2)
p1 <- qplot(x=wt,y=mpg,geom="point",main="Scatterplot of wt vs. mpg", data=mtcars)
p2 <- qplot(x=wt,y=disp,geom="point",main="Scatterplot of wt vs disp", data=mtcars)
p3 <- qplot(wt,data=mtcars)
p4 <- qplot(wt,mpg,data=mtcars,geom="boxplot")
p5 <- qplot(wt,data=mtcars)
p6 <- qplot(mpg,data=mtcars)
p7 <- qplot(disp,data=mtcars)
p8 <- qplot(disp, y=..density.., geom="density", data=mtcars)
p9 <- qplot(mpg, y=..density.., geom="density", data=mtcars)
vplayout <- function(x, y) viewport(layout.pos.row = x, layout.pos.col = y)
grid.newpage()
pushViewport(viewport(layout = grid.layout(3, 5))) # 3 rows, 5 columns
print(p1, vp = vplayout(1:2, 1:3)) # the big plot covers rows 1:2 and cols 1:3
print(p2, vp = vplayout(1, 4))
print(p3, vp = vplayout(1, 5))
print(p4, vp = vplayout(2, 4))
print(p5, vp = vplayout(2, 5))
print(p6, vp = vplayout(3, 1))
print(p7, vp = vplayout(3, 2))
print(p8, vp = vplayout(3, 3))
print(p9, vp = vplayout(3, 4:5))