I have a dataframe in which I would like to store \'raw\' numpy.array
:
df[\'COL_ARRAY\'] = df.apply(lambda r: np.array(do_something_with_r), axi
Just wrap what you want to store in a cell to a list
object through first apply
, and extract it by index 0
of that list
through second apply
:
import pandas as pd
import numpy as np
df = pd.DataFrame({'id': [1, 2, 3, 4],
'a': ['on', 'on', 'off', 'off'],
'b': ['on', 'off', 'on', 'off']})
df['new'] = df.apply(lambda x: [np.array(x)], axis=1).apply(lambda x: x[0])
df
output:
id a b new
0 1 on on [1, on, on]
1 2 on off [2, on, off]
2 3 off on [3, off, on]
3 4 off off [4, off, off]
Suppose you have a DataFrame ds
and it has a column named as 'class'. If ds
['class'] contains strings or numbers, and you want to change them with numpy.ndarray
s or list
s, the following code would help. In the code, class2vector
is a numpy.ndarray
or list
and ds_class
is a filter condition.
ds['class'] = ds['class'].map(lambda x: class2vector if (isinstance(x, str) and (x == ds_class)) else x)
Use a wrapper around the numpy array i.e. pass the numpy array as list
a = np.array([5, 6, 7, 8])
df = pd.DataFrame({"a": [a]})
Output:
a 0 [5, 6, 7, 8]
Or you can use apply(np.array)
by creating the tuples i.e. if you have a dataframe
df = pd.DataFrame({'id': [1, 2, 3, 4],
'a': ['on', 'on', 'off', 'off'],
'b': ['on', 'off', 'on', 'off']})
df['new'] = df.apply(lambda r: tuple(r), axis=1).apply(np.array)
Output :
a b id new 0 on on 1 [on, on, 1] 1 on off 2 [on, off, 2] 2 off on 3 [off, on, 3] 3 off off 4 [off, off, 4]
df['new'][0]
Output :
array(['on', 'on', '1'], dtype='<U2')
If you first set a column to have type object
, you can insert an array without any wrapping:
df = pd.DataFrame(columns=[1])
df[1] = df[1].astype(object)
df.loc[1, 1] = np.array([5, 6, 7, 8])
df
Output:
1
1 [5, 6, 7, 8]
You can wrap the Data Frame data args in square brackets to maintain the np.array
in each cell:
one_d_array = np.array([1,2,3])
two_d_array = one_d_array*one_d_array[:,np.newaxis]
two_d_array
array([[1, 2, 3],
[2, 4, 6],
[3, 6, 9]])
pd.DataFrame([
[one_d_array],
[two_d_array] ])
0
0 [1, 2, 3]
1 [[1, 2, 3], [2, 4, 6], [3, 6, 9]]