With the nice indexing methods in Pandas I have no problems extracting data in various ways. On the other hand I am still confused about how to change data in an existing Da
If you have one large dataframe and only a few update values I would use apply like this:
import pandas as pd
df = pd.DataFrame({'filename' : ['test0.dat', 'test2.dat'],
'm': [12, 13], 'n' : [None, None]})
data = {'filename' : 'test2.dat', 'n':16}
def update_vals(row, data=data):
if row.filename == data['filename']:
row.n = data['n']
return row
df.apply(update_vals, axis=1)
Update null elements with value in the same location in other. Combines a DataFrame with other DataFrame using func to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two.
df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]})
df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]})
df1.combine_first(df2)
A B
0 1.0 3.0
1 0.0 4.0
more information in this link
There are probably a few ways to do this, but one approach would be to merge the two dataframes together on the filename/m column, then populate the column 'n' from the right dataframe if a match was found. The n_x, n_y in the code refer to the left/right dataframes in the merge.
In[100] : df = pd.merge(df1, df2, how='left', on=['filename','m'])
In[101] : df
Out[101]:
filename m n_x n_y
0 test0.dat 12 None NaN
1 test2.dat 13 None 16
In[102] : df['n'] = df['n_y'].fillna(df['n_x'])
In[103] : df = df.drop(['n_x','n_y'], axis=1)
In[104] : df
Out[104]:
filename m n
0 test0.dat 12 None
1 test2.dat 13 16
So first of all, pandas updates using the index. When an update command does not update anything, check both left-hand side and right-hand side. If for some reason you are too lazy to update the indices to follow your identification logic, you can do something along the lines of
>>> df.loc[df.filename == 'test2.dat', 'n'] = df2[df2.filename == 'test2.dat'].loc[0]['n']
>>> df
Out[331]:
filename m n
0 test0.dat 12 None
1 test2.dat 13 16
If you want to do this for the whole table, I suggest a method I believe is superior to the previously mentioned ones: since your identifier is filename
, set filename
as your index, and then use update()
as you wanted to. Both merge
and the apply()
approach contain unnecessary overhead:
>>> df.set_index('filename', inplace=True)
>>> df2.set_index('filename', inplace=True)
>>> df.update(df2)
>>> df
Out[292]:
m n
filename
test0.dat 12 None
test2.dat 13 16