How to optimally divide an array into two subarrays so that sum of elements in both subarrays is same, otherwise give an error?
Given the array
A non optimal solution in python,
from itertools import permutations
def get_splitted_array(a):
for perm in permutations(a):
l1 = len(perm)
for i in range(1, l1):
if sum(perm[0:i]) == sum(perm[i:l1]):
return perm[0:i], perm[i:l1]
>>> a = [6,1,3,8]
>>> get_splitted_array(a)
((6, 3), (1, 8))
>>> a = [5,9,20,1,5]
>>>
>>> get_splitted_array(a)
((5, 9, 1, 5), (20,))
>>>
In its common variant, this problem imposes 2 constraints and it can be done in an easier way.
The algorithm that then works could be:
The following code does the above:
public boolean canBalance(int[] nums) {
int leftSum = 0, rightSum = 0, i, j;
if(nums.length == 1)
return false;
for(i=0, j=nums.length-1; i<=j ;){
if(leftSum <= rightSum){
leftSum+=nums[i];
i++;
}else{
rightSum+=nums[j];
j--;
}
}
return (rightSum == leftSum);
}
The output:
canBalance({1, 1, 1, 2, 1}) → true OK
canBalance({2, 1, 1, 2, 1}) → false OK
canBalance({10, 10}) → true OK
canBalance({1, 1, 1, 1, 4}) → true OK
canBalance({2, 1, 1, 1, 4}) → false OK
canBalance({2, 3, 4, 1, 2}) → false OK
canBalance({1, 2, 3, 1, 0, 2, 3}) → true OK
canBalance({1, 2, 3, 1, 0, 1, 3}) → false OK
canBalance({1}) → false OK
canBalance({1, 1, 1, 2, 1}) → true OK
Ofcourse, if the elements can be combined out-of-order, it does turn into the partition problem with all its complexity.
This is called partition problem. There are optimal solutions for some special cases. However, in general, it is an NP-complete problem.
def listSegmentation(theList):
newList = [[],[]]
print(theList)
wt1 = 0
wt2 = 0
dWt = 0
for idx in range(len(theList)):
wt = theList[idx]
if (wt > (wt1 + wt2) and wt1 > 0 and wt2 > 0):
newList[0] = newList[0] + newList[1]
newList[1] = []
newList[1].append(wt)
wt1 += wt2
wt2 = wt
elif ((wt2 + wt) >= (wt1 + wt)):
wt1 += wt
newList[0].append(wt)
elif ((wt2 + wt) < (wt1 + wt)):
wt2 += wt
newList[1].append(wt)
#Balancing
if(wt1 > wt2):
wtDiff = sum(newList[0]) - sum(newList[1])
ls1 = list(filter(lambda x: x <= wtDiff, newList[0]))
ls2 = list(filter(lambda x: x <= (wtDiff/2) , newList[1]))
while len(ls1) > 0 or len(ls2) > 0:
if len(ls1) > 0:
elDif1 = max(ls1)
newList[0].remove(elDif1)
newList[1].append(elDif1)
if len(ls2) > 0:
elDif2 = max(ls2)
newList[0].append(elDif2)
newList[1].remove(elDif2)
wtDiff = sum(newList[0]) - sum(newList[1])
ls1 = list(filter(lambda x: x <= wtDiff, newList[0]))
ls2 = list(filter(lambda x: x <= (wtDiff/2) , newList[1]))
if(wt2 > wt1):
wtDiff = sum(newList[1]) - sum(newList[0])
ls2 = list(filter(lambda x: x <= wtDiff, newList[1]))
ls1 = list(filter(lambda x: x <= (wtDiff/2) , newList[0]))
while len(ls1) > 0 or len(ls2) > 0:
if len(ls1) > 0:
elDif1 = max(ls1)
newList[0].remove(elDif1)
newList[1].append(elDif1)
if len(ls2) > 0:
elDif2 = max(ls2)
newList[0].append(elDif2)
newList[1].remove(elDif2)
wtDiff = sum(newList[1]) - sum(newList[0])
ls2 = list(filter(lambda x: x <= wtDiff, newList[1]))
ls1 = list(filter(lambda x: x <= (wtDiff/2) , newList[0]))
print(ls1, ls2)
print(sum(newList[0]),sum(newList[1]))
return newList
#Test cases
lst1 = [4,9,8,3,11,6,13,7,2,25,28,60,19,196]
lst2 = [7,16,5,11,4,9,15,2,1,13]
lst3 = [8,17,14,9,3,5,19,11,4,6,2]
print(listSegmentation(lst1))
print(listSegmentation(lst2))
print(listSegmentation(lst3))
@Gal Subset-Sum problem is NP-Complete and has a O(n*TotalSum) pseudo-polynomial Dynamic Programming algorithm. But this problem is not NP-Complete. This is a special case and in fact this can be solved in linear time.
Here we are looking for an index where we can split the array into two parts with same sum. Check following code.
Analysis: O(n), as the algorithm only iterates through the array and does not use TotalSum.
public class EqualSumSplit {
public static int solution( int[] A ) {
int[] B = new int[A.length];
int[] C = new int[A.length];
int sum = 0;
for (int i=0; i< A.length; i++) {
sum += A[i];
B[i] = sum;
// System.out.print(B[i]+" ");
}
// System.out.println();
sum = 0;
for (int i=A.length-1; i>=0; i--) {
sum += A[i];
C[i] = sum;
// System.out.print(C[i]+" ");
}
// System.out.println();
for (int i=0; i< A.length-1; i++) {
if (B[i] == C[i+1]) {
System.out.println(i+" "+B[i]);
return i;
}
}
return -1;
}
public static void main(String args[] ) {
int[] A = {-7, 1, 2, 3, -4, 3, 0};
int[] B = {10, 20 , 30 , 5 , 40 , 50 , 40 , 15};
solution(A);
solution(B);
}
}
a=[int(g) for g in input().split()] #for taking the array as input in a
single line
leftsum=0
n=len(a)
for i in range(n):
leftsum+=a[i] #calculates the sum of first subarray
rightsum=0
for j in range(i+1):
rightsum+=a[j] #calculates the sum of other subarray
if leftsum==rightsum:
pos=i+1 #if the sum of subarrays are equal,
break set position where the condition
gets satisfied and exit the loop
else:
pos=-1 #if the sum of subarrays is not
equal, set position to -1
if pos=-1 or pos=n:
print('It is not possible.')
else: #printing the sub arrays`
for k in range(n):
if pos=k:
print('')
print(str(a[k]),end='')