Python scatter plot. Size and style of the marker

前端 未结 3 1783
北恋
北恋 2020-12-02 11:31

I have a set of data that I want to show as a scatter plot. I want each point to be plotted as a square of size dx.

          x = [0.5,0.1,0.3]
         


        
相关标签:
3条回答
  • 2020-12-02 11:56

    If you want markers that resize with the figure size, you can use patches:

    from matplotlib import pyplot as plt
    from matplotlib.patches import Rectangle
    
    x = [0.5, 0.1, 0.3]
    y = [0.2 ,0.7, 0.8]
    z = [10, 15, 12]
    dx = [0.05, 0.2, 0.1]
    
    cmap = plt.cm.hot
    fig = plt.figure()
    ax = fig.add_subplot(111, aspect='equal')
    
    for x, y, c, h in zip(x, y, z, dx):
        ax.add_artist(Rectangle(xy=(x, y),
                      color=cmap(c**2),        # I did c**2 to get nice colors from your numbers
                      width=h, height=h))      # Gives a square of area h*h
    
    plt.show()
    

    enter image description here

    Note that:

    1. The squares are not centered at (x,y). x,y are actually the coords of the square lower left. I let it this way to simplify my code. You should use (x + dx/2, y + dx/2).
    2. The color is get from the hot colormap. I used z**2 to give colors. you should also adapt this to your needs

    Finally for your second question. You can get the border of the scatter marks out using the keyword arguments edgecolor or edgecolors. These are a matplotlib color argument or a sequence of rgba tuples, respectively. If you set the parameter to 'None', borders are not draw.

    0 讨论(0)
  • 2020-12-02 12:02

    Translate from user data coordinate system to display coordinate system.

    and use edgecolors='none' to plot faces with no outlines.

    import numpy as np
    
    fig = figure()
    ax = fig.add_subplot(111)
    dx_in_points = np.diff(ax.transData.transform(zip([0]*len(dx), dx))) 
    scatter(x,y,c=z,s=dx_in_points**2,marker='s', edgecolors='none')
    
    0 讨论(0)
  • 2020-12-02 12:07

    I think we can do it better with a collection of patches. According to documents:

    This (PatchCollection) makes it easier to assign a color map to a heterogeneous collection of patches.

    This also may improve plotting speed, since PatchCollection will draw faster than a large number of patches.

    Suppose you want to plot a scatter of circles with given radius in data unit:

    def circles(x, y, s, c='b', vmin=None, vmax=None, **kwargs):
        """
        Make a scatter of circles plot of x vs y, where x and y are sequence 
        like objects of the same lengths. The size of circles are in data scale.
    
        Parameters
        ----------
        x,y : scalar or array_like, shape (n, )
            Input data
        s : scalar or array_like, shape (n, ) 
            Radius of circle in data unit.
        c : color or sequence of color, optional, default : 'b'
            `c` can be a single color format string, or a sequence of color
            specifications of length `N`, or a sequence of `N` numbers to be
            mapped to colors using the `cmap` and `norm` specified via kwargs.
            Note that `c` should not be a single numeric RGB or RGBA sequence 
            because that is indistinguishable from an array of values
            to be colormapped. (If you insist, use `color` instead.)  
            `c` can be a 2-D array in which the rows are RGB or RGBA, however. 
        vmin, vmax : scalar, optional, default: None
            `vmin` and `vmax` are used in conjunction with `norm` to normalize
            luminance data.  If either are `None`, the min and max of the
            color array is used.
        kwargs : `~matplotlib.collections.Collection` properties
            Eg. alpha, edgecolor(ec), facecolor(fc), linewidth(lw), linestyle(ls), 
            norm, cmap, transform, etc.
    
        Returns
        -------
        paths : `~matplotlib.collections.PathCollection`
    
        Examples
        --------
        a = np.arange(11)
        circles(a, a, a*0.2, c=a, alpha=0.5, edgecolor='none')
        plt.colorbar()
    
        License
        --------
        This code is under [The BSD 3-Clause License]
        (http://opensource.org/licenses/BSD-3-Clause)
        """
        import numpy as np
        import matplotlib.pyplot as plt
        from matplotlib.patches import Circle
        from matplotlib.collections import PatchCollection
    
        if np.isscalar(c):
            kwargs.setdefault('color', c)
            c = None
        if 'fc' in kwargs: kwargs.setdefault('facecolor', kwargs.pop('fc'))
        if 'ec' in kwargs: kwargs.setdefault('edgecolor', kwargs.pop('ec'))
        if 'ls' in kwargs: kwargs.setdefault('linestyle', kwargs.pop('ls'))
        if 'lw' in kwargs: kwargs.setdefault('linewidth', kwargs.pop('lw'))
    
        patches = [Circle((x_, y_), s_) for x_, y_, s_ in np.broadcast(x, y, s)]
        collection = PatchCollection(patches, **kwargs)
        if c is not None:
            collection.set_array(np.asarray(c))
            collection.set_clim(vmin, vmax)
    
        ax = plt.gca()
        ax.add_collection(collection)
        ax.autoscale_view()
        if c is not None:
            plt.sci(collection)
        return collection
    

    All the arguments and keywords (except marker) of scatter function would work in similar way. I've write a gist including circles, ellipses and squares/rectangles. If you want a collection of other shape, you could modify it yourself.

    If you want to plot a colorbar just run colorbar() or pass the returned collection object to colorbar function.

    An example:

    from pylab import *
    figure(figsize=(6,4))
    ax = subplot(aspect='equal')
    
    #plot a set of circle
    a = arange(11)
    out = circles(a, a, a*0.2, c=a, alpha=0.5, ec='none')
    colorbar()
    
    #plot one circle (the lower-right one)
    circles(1, 0, 0.4, 'r', ls='--', lw=5, fc='none', transform=ax.transAxes)
    
    xlim(0,10)
    ylim(0,10)
    

    Output:

    0 讨论(0)
提交回复
热议问题