I have a piece of c++11 code similar like below:
switch(var) {
case 1: dosomething(std::get<1>(tuple));
case 2: dosomething(std::get<2>(tup
It's possible but it's pretty ugly:
#include <tuple>
#include <iostream>
template<typename T>
void doSomething(T t) { std::cout << t << '\n';}
template<int... N>
struct Switch;
template<int N, int... Ns>
struct Switch<N, Ns...>
{
template<typename... T>
void operator()(int n, std::tuple<T...>& t)
{
if (n == N)
doSomething(std::get<N>(t));
else
Switch<Ns...>()(n, t);
}
};
// default
template<>
struct Switch<>
{
template<typename... T>
void operator()(int n, std::tuple<T...>& t) { }
};
int main()
{
std::tuple<int, char, double, int, int, const char*> t;
Switch<1, 2, 4, 5>()(4, t);
}
Just list each constant that would have been a case
label in the original switch
in the template argument list for the Switch
specialization.
For this to compile, doSomething(std::get<N>(t))
must be a valid expression for every N
in the argument list of the Switch
specialization ... but that's true of the switch
statement too.
For a small number of cases it compiles to the same code as a switch
, I didn't check if it scales to large numbers of cases.
If you don't want to type out every number in Switch<1, 2, 3, 4, ... 255>
then you could create a std::integer_sequence
and then use that to instantiate the Switch
:
template<size_t... N>
Switch<N...>
make_switch(std::index_sequence<N...>)
{
return {};
}
std::tuple<int, char, double, int, int, const char*> t;
make_switch(std::make_index_sequence<4>{})(3, t);
This creates a Switch<0,1,2,3>
so if you don't want the 0
case you'd need to manipulate the index_sequence
, e.g. this chops the zero off the front of the list:
template<size_t... N>
Switch<N...>
make_switch(std::index_sequence<0, N...>)
{
return {};
}
Unfortunately GCC crashes when trying to compile make_index_sequence<255>
as it involves too much recursion and uses too much memory, and Clang rejects it by default too (because it has a very low default for -ftemplate-instantiation-depth
) so this isn't a very practical solution!
I modified Oktalist's answer to make it slightly more robust:
visit_at
method constexpr
visit_at
method compatible with any std::get
-compatible type (e.g., std::array
)For completeness sake, I made it noexcept
as well, though that is a mess (where is noexcept(auto) already?).
namespace detail
{
template<std::size_t I>
struct visit_impl
{
template<typename Tuple, typename F, typename ...Args>
inline static constexpr int visit(Tuple const &tuple, std::size_t idx, F fun, Args &&...args) noexcept(noexcept(fun(std::get<I - 1U>(tuple), std::forward<Args>(args)...)) && noexcept(visit_impl<I - 1U>::visit(tuple, idx, fun, std::forward<Args>(args)...)))
{
return (idx == (I - 1U) ? (fun(std::get<I - 1U>(tuple), std::forward<Args>(args)...), void(), 0) : visit_impl<I - 1U>::visit(tuple, idx, fun, std::forward<Args>(args)...));
}
template<typename R, typename Tuple, typename F, typename ...Args>
inline static constexpr R visit(Tuple const &tuple, std::size_t idx, F fun, Args &&...args) noexcept(noexcept(fun(std::get<I - 1U>(tuple), std::forward<Args>(args)...)) && noexcept(visit_impl<I - 1U>::template visit<R>(tuple, idx, fun, std::forward<Args>(args)...)))
{
return (idx == (I - 1U) ? fun(std::get<I - 1U>(tuple), std::forward<Args>(args)...) : visit_impl<I - 1U>::template visit<R>(tuple, idx, fun, std::forward<Args>(args)...));
}
};
template<>
struct visit_impl<0U>
{
template<typename Tuple, typename F, typename ...Args>
inline static constexpr int visit(Tuple const&, std::size_t, F, Args&&...) noexcept
{
return 0;
}
template<typename R, typename Tuple, typename F, typename ...Args>
inline static constexpr R visit(Tuple const&, std::size_t, F, Args&&...) noexcept(noexcept(R{}))
{
static_assert(std::is_default_constructible<R>::value, "Explicit return type of visit_at method must be default-constructible");
return R{};
}
};
}
template<typename Tuple, typename F, typename ...Args>
inline constexpr void visit_at(Tuple const &tuple, std::size_t idx, F fun, Args &&...args) noexcept(noexcept(detail::visit_impl<std::tuple_size<Tuple>::value>::visit(tuple, idx, fun, std::forward<Args>(args)...)))
{
detail::visit_impl<std::tuple_size<Tuple>::value>::visit(tuple, idx, fun, std::forward<Args>(args)...);
}
template<typename R, typename Tuple, typename F, typename ...Args>
inline constexpr R visit_at(Tuple const &tuple, std::size_t idx, F fun, Args &&...args) noexcept(noexcept(detail::visit_impl<std::tuple_size<Tuple>::value>::template visit<R>(tuple, idx, fun, std::forward<Args>(args)...)))
{
return detail::visit_impl<std::tuple_size<Tuple>::value>::template visit<R>(tuple, idx, fun, std::forward<Args>(args)...);
}
DEMO (demo is not C++11 (due to laziness), but the implementation above should be)
Here's a version that doesn't use an index sequence:
template <size_t I>
struct visit_impl
{
template <typename T, typename F>
static void visit(T& tup, size_t idx, F fun)
{
if (idx == I - 1) fun(std::get<I - 1>(tup));
else visit_impl<I - 1>::visit(tup, idx, fun);
}
};
template <>
struct visit_impl<0>
{
template <typename T, typename F>
static void visit(T& tup, size_t idx, F fun) { assert(false); }
};
template <typename F, typename... Ts>
void visit_at(std::tuple<Ts...> const& tup, size_t idx, F fun)
{
visit_impl<sizeof...(Ts)>::visit(tup, idx, fun);
}
template <typename F, typename... Ts>
void visit_at(std::tuple<Ts...>& tup, size_t idx, F fun)
{
visit_impl<sizeof...(Ts)>::visit(tup, idx, fun);
}
DEMO
For c++11 here is a concise approach that returns a pointer:
template <typename Tuple, long template_index = std::tuple_size<Tuple>::value>
struct tuple_address {
static void * of(Tuple & tuple, long function_index) {
if (template_index - 1 == function_index) {
return &std::get<template_index - 1>(tuple);
} else {
return tuple_address<Tuple, template_index - 1>::of(tuple, function_index);
}
}
};
template <typename Tuple>
struct tuple_address<Tuple, 0> {
static void * of(Tuple & tuple, long function_index) {
return 0;
}
};
template <typename Tuple>
void * tuple_address_of(Tuple & tuple, long index) {
return tuple_address<Tuple>::of(tuple, index);
}
Here's an unreadably over-generic implementation without recursion. I don't think I'd use this in production - it's a good example of write-only code - but it's interesting that it can be done. (DEMO):
#include <array>
#include <cstddef>
#include <initializer_list>
#include <tuple>
#include <iostream>
#include <type_traits>
#include <utility>
template <std::size_t...Is> struct index_sequence {};
template <std::size_t N, std::size_t...Is>
struct build : public build<N - 1, N - 1, Is...> {};
template <std::size_t...Is>
struct build<0, Is...> {
using type = index_sequence<Is...>;
};
template <std::size_t N>
using make_index_sequence = typename build<N>::type;
template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;
namespace detail {
template <class Tuple, class F, std::size_t...Is>
void tuple_switch(const std::size_t i, Tuple&& t, F&& f, index_sequence<Is...>) {
[](...){}(
(i == Is && (
(void)std::forward<F>(f)(std::get<Is>(std::forward<Tuple>(t))), false))...
);
}
} // namespace detail
template <class Tuple, class F>
void tuple_switch(const std::size_t i, Tuple&& t, F&& f) {
static constexpr auto N =
std::tuple_size<remove_reference_t<Tuple>>::value;
detail::tuple_switch(i, std::forward<Tuple>(t), std::forward<F>(f),
make_index_sequence<N>{});
}
constexpr struct {
template <typename T>
void operator()(const T& t) const {
std::cout << t << '\n';
}
} print{};
int main() {
{
auto const t = std::make_tuple(42, 'z', 3.14, 13, 0, "Hello, World!");
for (std::size_t i = 0; i < std::tuple_size<decltype(t)>::value; ++i) {
tuple_switch(i, t, print);
}
}
std::cout << '\n';
{
auto const t = std::array<int, 4>{{0,1,2,3}};
for (std::size_t i = 0; i < t.size(); ++i) {
tuple_switch(i, t, print);
}
}
}
No need to get all cray cray in c++17.
template <class Func, class Tuple, size_t N = 0>
inline void runtime_get(Func func, Tuple& tup, size_t idx) {
if (N == idx) {
std::invoke(func, std::get<N>(tup));
return;
}
if constexpr (N + 1 < std::tuple_size_v<Tuple>) {
return runtime_get<Func, Tuple, N + 1>(func, tup, idx);
}
}
And runtime tuple_element
for fun.
// Returns a pointer to the type, so the element is not initialized.
template <class Tuple, class Func, size_t N = 0>
inline void runtime_tuple_element(Func func, size_t idx) {
if (N == idx) {
std::tuple_element_t<N, Tuple>* ptr = nullptr;
std::invoke(func, ptr);
return;
}
if constexpr (N + 1 < std::tuple_size_v<Tuple>) {
return runtime_tuple_element<Tuple, Func, N + 1>(func, idx);
}
}