I\'m surely missing something simple here. Trying to merge two dataframes in pandas that have mostly the same column names, but the right dataframe has some columns that the
I had this problem today using any of concat, append or merge, and I got around it by adding a helper column sequentially numbered and then doing an outer join
helper=1
for i in df1.index:
df1.loc[i,'helper']=helper
helper=helper+1
for i in df2.index:
df2.loc[i,'helper']=helper
helper=helper+1
df1.merge(df2,on='helper',how='outer')
I think in this case concat is what you want:
In [12]:
pd.concat([df,df1], axis=0, ignore_index=True)
Out[12]:
attr_1 attr_2 attr_3 id quantity
0 0 1 NaN 1 20
1 1 1 NaN 2 23
2 1 1 NaN 3 19
3 0 0 NaN 4 19
4 1 NaN 0 5 8
5 0 NaN 1 6 13
6 1 NaN 1 7 20
7 1 NaN 1 8 25
by passing axis=0
here you are stacking the df's on top of each other which I believe is what you want then producing NaN
value where they are absent from their respective dfs.