I want to make a simple neural network which uses the ReLU function. Can someone give me a clue of how can I implement the function using numpy.
There are a couple of ways.
>>> x = np.random.random((3, 2)) - 0.5
>>> x
array([[-0.00590765, 0.18932873],
[-0.32396051, 0.25586596],
[ 0.22358098, 0.02217555]])
>>> np.maximum(x, 0)
array([[ 0. , 0.18932873],
[ 0. , 0.25586596],
[ 0.22358098, 0.02217555]])
>>> x * (x > 0)
array([[-0. , 0.18932873],
[-0. , 0.25586596],
[ 0.22358098, 0.02217555]])
>>> (abs(x) + x) / 2
array([[ 0. , 0.18932873],
[ 0. , 0.25586596],
[ 0.22358098, 0.02217555]])
If timing the results with the following code:
import numpy as np
x = np.random.random((5000, 5000)) - 0.5
print("max method:")
%timeit -n10 np.maximum(x, 0)
print("multiplication method:")
%timeit -n10 x * (x > 0)
print("abs method:")
%timeit -n10 (abs(x) + x) / 2
We get:
max method:
10 loops, best of 3: 239 ms per loop
multiplication method:
10 loops, best of 3: 145 ms per loop
abs method:
10 loops, best of 3: 288 ms per loop
So the multiplication seems to be the fastest.
If we have 3 parameters (t0, a0, a1)
for Relu, that is we want to implement
if x > t0:
x = x * a1
else:
x = x * a0
We can use the following code:
X = X * (X > t0) * a1 + X * (X < t0) * a0
X
there is a matrix.
I'm completely revising my original answer because of points raised in the other questions and comments. Here is the new benchmark script:
import time
import numpy as np
def fancy_index_relu(m):
m[m < 0] = 0
relus = {
"max": lambda x: np.maximum(x, 0),
"in-place max": lambda x: np.maximum(x, 0, x),
"mul": lambda x: x * (x > 0),
"abs": lambda x: (abs(x) + x) / 2,
"fancy index": fancy_index_relu,
}
for name, relu in relus.items():
n_iter = 20
x = np.random.random((n_iter, 5000, 5000)) - 0.5
t1 = time.time()
for i in range(n_iter):
relu(x[i])
t2 = time.time()
print("{:>12s} {:3.0f} ms".format(name, (t2 - t1) / n_iter * 1000))
It takes care to use a different ndarray for each implementation and iteration. Here are the results:
max 126 ms
in-place max 107 ms
mul 136 ms
abs 86 ms
fancy index 132 ms
numpy didn't have the function of relu, but you define it by yourself as follow:
def relu(x):
return np.maximum(0, x)
for example:
arr = np.array([[-1,2,3],[1,2,3]])
ret = relu(arr)
print(ret) # print [[0 2 3] [1 2 3]]
This is more precise implementation:
def ReLU(x):
return abs(x) * (x > 0)
EDIT As jirassimok has mentioned below my function will change the data in place, after that it runs a lot faster in timeit. This causes the good results. It's some kind of cheating. Sorry for your inconvenience.
I found a faster method for ReLU with numpy. You can use the fancy index feature of numpy as well.
fancy index:
20.3 ms ± 272 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
>>> x = np.random.random((5,5)) - 0.5
>>> x
array([[-0.21444316, -0.05676216, 0.43956365, -0.30788116, -0.19952038],
[-0.43062223, 0.12144647, -0.05698369, -0.32187085, 0.24901568],
[ 0.06785385, -0.43476031, -0.0735933 , 0.3736868 , 0.24832288],
[ 0.47085262, -0.06379623, 0.46904916, -0.29421609, -0.15091168],
[ 0.08381359, -0.25068492, -0.25733763, -0.1852205 , -0.42816953]])
>>> x[x<0]=0
>>> x
array([[ 0. , 0. , 0.43956365, 0. , 0. ],
[ 0. , 0.12144647, 0. , 0. , 0.24901568],
[ 0.06785385, 0. , 0. , 0.3736868 , 0.24832288],
[ 0.47085262, 0. , 0.46904916, 0. , 0. ],
[ 0.08381359, 0. , 0. , 0. , 0. ]])
Here is my benchmark:
import numpy as np
x = np.random.random((5000, 5000)) - 0.5
print("max method:")
%timeit -n10 np.maximum(x, 0)
print("max inplace method:")
%timeit -n10 np.maximum(x, 0,x)
print("multiplication method:")
%timeit -n10 x * (x > 0)
print("abs method:")
%timeit -n10 (abs(x) + x) / 2
print("fancy index:")
%timeit -n10 x[x<0] =0
max method:
241 ms ± 3.53 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
max inplace method:
38.5 ms ± 4 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
multiplication method:
162 ms ± 3.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
abs method:
181 ms ± 4.18 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
fancy index:
20.3 ms ± 272 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)