I need a simple floating point rounding function, thus:
double round(double);
round(0.1) = 0
round(-0.1) = 0
round(-0.9) = -1
I can find
It's available since C++11 in cmath (according to http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf)
#include <cmath>
#include <iostream>
int main(int argc, char** argv) {
std::cout << "round(0.5):\t" << round(0.5) << std::endl;
std::cout << "round(-0.5):\t" << round(-0.5) << std::endl;
std::cout << "round(1.4):\t" << round(1.4) << std::endl;
std::cout << "round(-1.4):\t" << round(-1.4) << std::endl;
std::cout << "round(1.6):\t" << round(1.6) << std::endl;
std::cout << "round(-1.6):\t" << round(-1.6) << std::endl;
return 0;
}
Output:
round(0.5): 1
round(-0.5): -1
round(1.4): 1
round(-1.4): -1
round(1.6): 2
round(-1.6): -2
Boost offers a simple set of rounding functions.
#include <boost/math/special_functions/round.hpp>
double a = boost::math::round(1.5); // Yields 2.0
int b = boost::math::iround(1.5); // Yields 2 as an integer
For more information, see the Boost documentation.
Edit: Since C++11, there are std::round, std::lround, and std::llround.
Beware of floor(x+0.5)
. Here is what can happen for odd numbers in range [2^52,2^53]:
-bash-3.2$ cat >test-round.c <<END
#include <math.h>
#include <stdio.h>
int main() {
double x=5000000000000001.0;
double y=round(x);
double z=floor(x+0.5);
printf(" x =%f\n",x);
printf("round(x) =%f\n",y);
printf("floor(x+0.5)=%f\n",z);
return 0;
}
END
-bash-3.2$ gcc test-round.c
-bash-3.2$ ./a.out
x =5000000000000001.000000
round(x) =5000000000000001.000000
floor(x+0.5)=5000000000000002.000000
This is http://bugs.squeak.org/view.php?id=7134. Use a solution like the one of @konik.
My own robust version would be something like:
double round(double x)
{
double truncated,roundedFraction;
double fraction = modf(x, &truncated);
modf(2.0*fraction, &roundedFraction);
return truncated + roundedFraction;
}
Another reason to avoid floor(x+0.5) is given here.
If you ultimately want to convert the double
output of your round()
function to an int
, then the accepted solutions of this question will look something like:
int roundint(double r) {
return (int)((r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5));
}
This clocks in at around 8.88 ns on my machine when passed in uniformly random values.
The below is functionally equivalent, as far as I can tell, but clocks in at 2.48 ns on my machine, for a significant performance advantage:
int roundint (double r) {
int tmp = static_cast<int> (r);
tmp += (r-tmp>=.5) - (r-tmp<=-.5);
return tmp;
}
Among the reasons for the better performance is the skipped branching.