I have a problem with adding columns in pandas. I have DataFrame, dimensional is nxk. And in process I wiil need add columns with dimensional mx1, where m = [1,n], but I don
If you use accepted answer, you'll lose your column names, as shown in the accepted answer example, and described in the documentation (emphasis added):
The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information.
It looks like column names ('Name column'
) are meaningful to the Original Poster / Original Question.
To save column names, use pandas.concat
, but don't ignore_index
(default value of ignore_index
is false
; so you can omit that argument altogether). Continue to use axis=1
:
import pandas
# Note these columns have 3 rows of values:
original = pandas.DataFrame({
'Age':[10, 12, 13],
'Gender':['M','F','F']
})
# Note this column has 4 rows of values:
additional = pandas.DataFrame({
'Name': ['Nate A', 'Jessie A', 'Daniel H', 'John D']
})
new = pandas.concat([original, additional], axis=1)
# Identical:
# new = pandas.concat([original, additional], ignore_index=False, axis=1)
print(new.head())
# Age Gender Name
#0 10 M Nate A
#1 12 F Jessie A
#2 13 F Daniel H
#3 NaN NaN John D
Notice how John D does not have an Age or a Gender.
Use concat and pass axis=1
and ignore_index=True
:
In [38]:
import numpy as np
df = pd.DataFrame({'a':np.arange(5)})
df1 = pd.DataFrame({'b':np.arange(4)})
print(df1)
df
b
0 0
1 1
2 2
3 3
Out[38]:
a
0 0
1 1
2 2
3 3
4 4
In [39]:
pd.concat([df,df1], ignore_index=True, axis=1)
Out[39]:
0 1
0 0 0
1 1 1
2 2 2
3 3 3
4 4 NaN
We can add the different size of list values to DataFrame.
Example
a = [0,1,2,3]
b = [0,1,2,3,4,5,6,7,8,9]
c = [0,1]
Find the Length of all list
la,lb,lc = len(a),len(b),len(c)
# now find the max
max_len = max(la,lb,lc)
Resize all according to the determined max length (not in this example
if not max_len == la:
a.extend(['']*(max_len-la))
if not max_len == lb:
b.extend(['']*(max_len-lb))
if not max_len == lc:
c.extend(['']*(max_len-lc))
Now the all list is same length and create dataframe
pd.DataFrame({'A':a,'B':b,'C':c})
Final Output is
A B C
0 1 0 1
1 2 1
2 3 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
I had the same issue, two different dataframes and without a common column. I just needed to put them beside each other in a csv file.
df1 = df1.reset_index()
df2 = df2.reset_index()
df = [df1, df2]
df_final = pd.concat(df, axis=1)
df_final.to_csv(filename, index=False)
This way, you'll see your dfs
besides each other (column-wise), each of which with its own length.