I\'m using pyspark, loading a large csv file into a dataframe with spark-csv, and as a pre-processing step I need to apply a variety of operations to the data available in o
It is not possible to create multiple top level columns from a single UDF call but you can create a new struct
. It requires an UDF with specified returnType
:
from pyspark.sql.functions import udf
from pyspark.sql.types import *
schema = StructType([
StructField("foo", FloatType(), False),
StructField("bar", FloatType(), False)
])
def udf_test(n):
return (n / 2, n % 2) if n and n != 0.0 else (float('nan'), float('nan'))
test_udf = udf(udf_test, schema)
df = sc.parallelize([(1, 2.0), (2, 3.0)]).toDF(["x", "y"])
foobars = df.select(test_udf("y").alias("foobar"))
foobars.printSchema()
## root
## |-- foobar: struct (nullable = true)
## | |-- foo: float (nullable = false)
## | |-- bar: float (nullable = false)
You further flatten the schema with simple select
:
foobars.select("foobar.foo", "foobar.bar").show()
## +---+---+
## |foo|bar|
## +---+---+
## |1.0|0.0|
## |1.5|1.0|
## +---+---+
See also Derive multiple columns from a single column in a Spark DataFrame
you can use flatMap to get the column the desired dataframe in one go
df=df.withColumn('udf_results',udf)
df4=df.select('udf_results').rdd.flatMap(lambda x:x).toDF(schema=your_new_schema)